Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Appl Physiol Nutr Metab ; 49(5): 649-658, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38241659

ABSTRACT

Deciphering lipid metabolism in white adipose tissue (WAT) depots during weight gain is important to understand the heterogeneity of WAT and its roles in obesity. Here, we examined the expression of key enzymes of lipid metabolism and changes in the morphology of representative visceral (epididymal) and subcutaneous (inguinal) WAT (eWAT and iWAT, respectively)-in adult male rats acclimated to cold (4 ± 1 °C) for 45 days and reacclimated to room temperature (RT, 22 ± 1 °C) for 1, 3, 7, 12, 21, or 45 days. The relative mass of both depots decreased to a similar extent after cold acclimation. However, fatty acid synthase (FAS), glucose-6-phosphate dehydrogenase (G6PDH), and medium-chain acyl-CoA dehydrogenase (ACADM) protein level increased only in eWAT, whereas adipose triglyceride lipase (ATGL) expression increased only in iWAT. During reacclimation, the relative mass of eWAT reached control values on day 12 and that of iWAT on day 45 of reacclimation. The faster recovery of eWAT mass is associated with higher expression of FAS, acetyl-CoA carboxylase (ACC), G6PDH, and ACADM during reacclimation and a delayed increase in ATGL. The absence of an increase in proliferating cell nuclear antigen suggests that the observed depot-specific mass increase is predominantly due to metabolic adjustments. In summary, this study shows a differential rate of visceral and subcutaneous adipose tissue weight regain during post-cold reacclimation of rats at RT. Faster recovery of the visceral WAT as compared to subcutaneous WAT during reacclimation at RT could be attributed to observed differences in the expression patterns of lipid metabolic enzymes.


Subject(s)
Acclimatization , Acyltransferases , Adipose Tissue, White , Cold Temperature , Intra-Abdominal Fat , Subcutaneous Fat , Animals , Male , Subcutaneous Fat/metabolism , Intra-Abdominal Fat/metabolism , Acclimatization/physiology , Adipose Tissue, White/metabolism , Rats , Lipid Metabolism/physiology , Rats, Wistar , Lipase/metabolism , Glucosephosphate Dehydrogenase/metabolism
2.
Cells ; 13(2)2024 01 15.
Article in English | MEDLINE | ID: mdl-38247846

ABSTRACT

The close cooperation between breast cancer and cancer-associated adipose tissue (CAAT) shapes the malignant phenotype, but the role of mitochondrial metabolic reprogramming and obesity in breast cancer remains undecided, especially in premenopausal women. Here, we examined mitochondrial metabolic dynamics in paired biopsies of malignant versus benign breast tumor tissue and CAAT in normal-weight and overweight/obese premenopausal women. Lower protein level of pyruvate dehydrogenase and citrate synthase in malignant tumor tissue indicated decreased carbon flux from glucose into the Krebs cycle, whereas the trend was just the opposite in malignant CAAT. Simultaneously, stimulated lipolysis in CAAT of obese women was followed by upregulated ß-oxidation, as well as fatty acid synthesis enzymes in both tumor tissue and CAAT of women with malignant tumors, corroborating their physical association. Further, protein level of electron transport chain complexes was generally increased in tumor tissue and CAAT from women with malignant tumors, respective to obesity. Preserved mitochondrial structure in malignant tumor tissue was also observed. However, mitochondrial DNA copy number and protein levels of PGC-1α were dependent on both malignancy and obesity in tumor tissue and CAAT. In conclusion, metabolic cooperation between breast cancer and CAAT in premenopausal women involves obesity-related, synchronized changes in mitochondrial metabolism.


Subject(s)
Breast Neoplasms , Female , Humans , Adipose Tissue , Mitochondria , Lipolysis , Obesity
3.
FEBS Lett ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38140817

ABSTRACT

Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.

4.
Biofactors ; 49(3): 600-611, 2023.
Article in English | MEDLINE | ID: mdl-36585756

ABSTRACT

Adaptive responses to environmental and physiological challenges, including exposure to low environmental temperature, require extensive structural, redox, and metabolic reprogramming. Detailed molecular mechanisms of such processes in the skin are lacking, especially the role of nuclear factor erythroid 2-related factor 2 (Nrf2) and other closely related redox-sensitive transcription factors Nrf1, Nrf3, and nuclear respiratory factor (NRF1). To investigate the role of Nrf2, we examined redox and metabolic responses in the skin of wild-type (WT) mice and mice lacking functional Nrf2 (Nrf2 KO) at room (RT, 24 ± 1°C) and cold (4 ± 1°C) temperature. Our results demonstrate distinct expression profiles of major enzymes involved in antioxidant defense and key metabolic and mitochondrial pathways in the skin, depending on the functional Nrf2 and/or cold stimulus. Nrf2 KO mice at RT displayed profound alterations in redox, mitochondrial and metabolic responses, generally akin to cold-induced skin responses in WT mice. Immunohistochemical analyses of skin cell compartments (keratinocytes, fibroblasts, hair follicle, and sebaceous gland) and spatial locations (nucleus and cytoplasm) revealed synergistic interactions between members of the Nrf transcription factor family as part of redox-metabolic reprogramming in WT mice upon cold acclimation. In contrast, Nrf2 KO mice at RT showed loss of NRF1 expression and a compensatory activation of Nrf1/Nrf3, which was abolished upon cold, concomitant with blunted redox-metabolic responses. These data show for the first time a novel role for Nrf2 in skin physiology in response to low environmental temperature, with important implications in human connective tissue diseases with altered thermogenic responses.


Subject(s)
NF-E2-Related Factor 2 , Nuclear Respiratory Factor 1 , Mice , Humans , Animals , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Nuclear Respiratory Factor 1/genetics , Nuclear Respiratory Factor 1/chemistry , Nuclear Respiratory Factor 1/metabolism , Gene Expression Regulation , Oxidation-Reduction , Acclimatization/genetics
5.
Antioxidants (Basel) ; 10(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34943013

ABSTRACT

Remote ischaemic preconditioning (RIPC) is a medical procedure that consists of repeated brief periods of transient ischaemia and reperfusion of distant organs (limbs) with the ability to provide internal organ protection from ischaemia. Even though RIPC has been successfully applied in patients with myocardial infarction during coronary revascularization (surgery/percutaneous angioplasty), the underlying molecular mechanisms are yet to be clarified. Thus, our study aimed to determine the role of nitric oxide synthase (NOS) isoforms in RIPC-induced protection (3 × 5 min of forearm ischaemia with 5 min of reperfusion) of arterial graft in patients undergoing urgent coronary artery bypass grafting (CABG). We examined RIPC effects on specific expression and immunolocalization of three NOS isoforms - endothelial (eNOS), inducible (iNOS) and neuronal (nNOS) in patients' internal thoracic artery (ITA) used as a graft. We found that the application of RIPC protocol leads to an increased protein expression of eNOS, which was further confirmed with strong eNOS immunopositivity, especially in the endothelium and smooth muscle cells of ITA. The same analysis of two other NOS isoforms, iNOS and nNOS, showed no significant differences between patients undergoing CABG with or without RIPC. Our results demonstrate RIPC-induced upregulation of eNOS in human ITA, pointing to its significance in achieving protective phenotype on a systemic level with important implications for graft patency.

SELECTION OF CITATIONS
SEARCH DETAIL
...