Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 258(Pt 1): 128838, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128798

ABSTRACT

Pseudomonas aeruginosa is one of the leading causes of opportunistic infections such as chronic wound infection that could lead to multiple organ failure and death. Gallium (Ga3+) ions are known to inhibit P. aeruginosa growth and biofilm formation but require carrier for localized controlled delivery. Lactoferrin (LTf), a two-lobed protein, can deliver Ga3+ at sites of infection. This study aimed to develop a Ga-LTf complex for the treatment of wound infection. The characterisation of the Ga-LTf complex was conducted using differential scanning calorimetry (DSC), Infra-Red (FTIR) and Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES). The antibacterial activity was assessed by agar disc diffusion, liquid broth and biofilm inhibition assays using the colony forming units (CFUs). The healing capacity and biocompatibility were evaluated using a P.aeruginosa infected wound in a rat model. DSC analyses showed thermal transition consistent with apo-lactoferrin; FTIR confirmed the complexation of gallium to lactoferrin. ICP-OES confirmed the controlled local delivery of Ga3+. Ga-LTf showed a 0.57 log10 CFUs reduction at 24 h compared with untreated control in planktonic liquid broth assay. Ga-LTf showed the highest antibiofilm activity with a 2.24 log10 CFUs reduction at 24 h. Furthermore, Ga-LTf complex is biocompatible without any adverse effect on brain, kidney, liver and spleen of rats tested in this study. Ga-LTf can be potentially promising novel therapeutic agent to treat pathogenic bacterial infections.


Subject(s)
Gallium , Rats , Animals , Gallium/chemistry , Gallium/metabolism , Gallium/pharmacology , Pseudomonas aeruginosa , Lactoferrin/metabolism , Anti-Bacterial Agents/pharmacology , Biofilms
2.
PLoS One ; 16(7): e0252660, 2021.
Article in English | MEDLINE | ID: mdl-34234363

ABSTRACT

This study aimed to quantify the influence of clays and partially oxidised cellulose nanofibrils (OCNF) on gelation as well as characterise their physical and chemical interactions. Mixtures of Laponite and montmorillonite clays with OCNF form shear-thinning gels that are more viscous across the entire shear range than OCNF on its own. Viscosity and other rheological properties can be fine-tuned using different types of clay at different concentrations (0.5-2 wt%). Laponite particles are an order of magnitude smaller than those of montmorillonite (radii of 150 Å compared to 2000 Å) and are therefore able to facilitate networking of the cellulose fibrils, resulting in stronger effects on rheological properties including greater viscosity. This work presents a mechanism for modifying rheological properties using renewable and environmentally-friendly nanocellulose and clays which could be used in a variety of industrial products including home and personal care formulations.


Subject(s)
Cellulose, Oxidized/chemistry , Clay/chemistry , Rheology , Elasticity , Gels , Viscosity
3.
J Tissue Eng Regen Med ; 13(3): 396-405, 2019 03.
Article in English | MEDLINE | ID: mdl-30666804

ABSTRACT

Phosphate-based glasses (PBGs) are ideal materials for regenerative medicine strategies because their composition, degradation rates, and ion release profiles can easily be controlled. Strontium has previously been found to simultaneously affect bone resorption and deposition. Therefore, by combining the inherent properties of resorbable PBG and therapeutic activity of strontium, these glasses could be used as a delivery device of therapeutic factors for the treatment of orthopaedic diseases such as osteoporosis. This study shows the cytocompatibility and osteogenic potential of PBGs where CaO is gradually replaced by SrO in the near invert glass system 40P2 O5 ·(16-x)CaO·20Na2 O·24MgO·xSrO (x = 0, 4, 8, 12, and 16 mol%). Direct seeding of MG63 cells onto glass discs showed no significant difference in cell metabolic activity and DNA amount measurement across the different formulations studied. Cell attachment and spreading was confirmed via scanning electron microscopy (SEM) imaging at Days 3 and 14. Alkaline phosphatase (ALP) activity was similarly maintained across the glass compositions. Follow-on studies explored the effect of each glass composition in microsphere conformation (size: 63-125 µm) on human mesenchymal stem cells (hMSCs) in 3D cultures, and analysis of cell metabolic activity and ALP activity showed no significant differences at Day 14 over the compositional range investigated, in line with the observations from MG63 cell culture studies. Environmental SEM and live cell imaging at Day 14 of hMSCs seeded on the microspheres showed cell attachment and colonisation of the microsphere surfaces, confirming these formulations as promising candidates for regenerative medicine strategies addressing compromised musculoskeletal/orthopaedic diseases.


Subject(s)
Bone Regeneration/drug effects , Calcium/pharmacology , Glass/chemistry , Microspheres , Phosphates/pharmacology , Strontium/pharmacology , Alkaline Phosphatase/metabolism , Cell Line , Cell Proliferation/drug effects , DNA/metabolism , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/ultrastructure
4.
Carbohydr Polym ; 204: 59-67, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30366543

ABSTRACT

This study aimed to explore the correlation between mechanical and structural properties of chitosan-agarose blend (Ch-Agrs) scaffolds. Porosity of Ch-Agrs scaffolds was constant at 93%, whilst pore sizes varied between 150 and 550 µm. Pore sizes of the blend scaffolds (150-300 µm) were significantly smaller than for either agarose or chitosan scaffolds alone (ca. 500 µm). Ch50-Agrs50 blend scaffold showed the highest compressive modulus and strength values (4.5 ± 0.4 and 0.35 ± 0.03 MPa) due to reduction in the pore size. The presence of agarose improved the stability of the blends in aqueous media. The increase in compressive properties and residual weight after the TGA test, combined with the reduction in the swelling percentage of the blend scaffolds suggested an interaction between chitosan and agarose via hydrogen bonding which was confirmed using FTIR analysis. All wet blend scaffolds exhibited instant recovery after full compression. This study shows the potential of Ch-Agrs scaffolds for repairing soft tissue.

5.
J Biomater Appl ; 32(7): 906-919, 2018 02.
Article in English | MEDLINE | ID: mdl-29237353

ABSTRACT

Mesenchymal stem cells play a vital role in bone formation process by differentiating into osteoblasts, in a tissue that offers not a flat but a discontinuous three-dimensional (3D) topography in vivo. In order to understand how geometry may be affecting mesenchymal stem cells, this study explored the influence of 3D geometry on mesenchymal stem cell-fate by comparing cell growth, viability and osteogenic potential using monolayer (two-dimensional, 2D) with microsphere (3D) culture systems normalised to surface area. The results suggested lower cell viability and reduced cell growth in 3D. Alkaline phosphatase activity was higher in 3D; however, both collagen and mineral deposition appeared significantly lower in 3D, even after osteogenic supplementation. Also, there were signs of patchy mineralisation in 3D with or without osteogenic supplementation as early as day 7. These results suggest that the convex surfaces on microspheres and inter-particulate porosity may have led to variable cell morphology and fate within the 3D culture. This study provides deeper insights into geometrical regulation of mesenchymal stem cell responses applicable for bone tissue engineering.


Subject(s)
Biocompatible Materials/chemistry , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Osteogenesis , Silicates/chemistry , Tissue Engineering/methods , Cell Adhesion , Cell Culture Techniques/methods , Cell Differentiation , Cell Line , Cell Proliferation , Cell Survival , Humans , Mesenchymal Stem Cells/metabolism , Microspheres , Osteoblasts/metabolism , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...