Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38463958

ABSTRACT

Despite the success of BCMA-targeting CAR-Ts in multiple myeloma, patients with high-risk cytogenetic features still relapse most quickly and are in urgent need of additional therapeutic options. Here, we identify CD70, widely recognized as a favorable immunotherapy target in other cancers, as a specifically upregulated cell surface antigen in high risk myeloma tumors. We use a structure-guided design to define a CD27-based anti-CD70 CAR-T design that outperforms all tested scFv-based CARs, leading to >80-fold improved CAR-T expansion in vivo. Epigenetic analysis via machine learning predicts key transcription factors and transcriptional networks driving CD70 upregulation in high risk myeloma. Dual-targeting CAR-Ts against either CD70 or BCMA demonstrate a potential strategy to avoid antigen escape-mediated resistance. Together, these findings support the promise of targeting CD70 with optimized CAR-Ts in myeloma as well as future clinical translation of this approach.

2.
Int J Mol Sci ; 24(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37569801

ABSTRACT

Inflammation is associated with many pathology disorders and the malignant progression of most cancers. Therefore, targeting inflammatory pathways could provide a promising strategy for disease prevention and treatment. In this study, we experimentally investigated the anti-inflammatory effect of CC5 and CC8, two disintegrin isoforms isolated from Cerastes cerastes snake venom, on LPS-stimulated macrophages, both on human THP-1 and mouse RAW264.7 cell adherence and their underlying mechanisms by measuring cytokine release levels and Western blot assay. Equally, both molecules were evaluated on a carrageenan-induced edema rat model. Our findings suggest that CC5 and CC8 were able to reduce adhesion of LPS-stimulated macrophages both on human THP-1 and mouse RAW264.7 cells to fibrinogen and vitronectin through the interaction with the αvß3 integrin receptor. Moreover, CC5 and CC8 reduced the levels of reactive oxygen species (ROS) mediated by the NF-κB, MAPK and AKT signaling pathways that lead to decreased production of the pro-inflammatory cytokines TNF-α, IL-6 and IL-8 and increased secretion of IL-10 in LPS-stimulated THP-1 and RAW264.7 cells. Interestingly, both molecules potently exhibited an anti-inflammatory effect in vivo by reducing paw swelling in rats. In light of these results, we can propose the CC5 and CC8 disintegrins as interesting tools to design potential candidates against inflammatory-related diseases.


Subject(s)
Disintegrins , Viperidae , Rats , Mice , Humans , Animals , Disintegrins/pharmacology , Lipopolysaccharides/toxicity , Viperidae/metabolism , Snake Venoms/pharmacology , NF-kappa B/metabolism , Inflammation/drug therapy , Cytokines/metabolism , Protein Isoforms , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , RAW 264.7 Cells
3.
Toxicon ; 187: 144-150, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32918926

ABSTRACT

The excessive production of inflammatory mediators results in an overactive immune response leading to the worsening of various human diseases. Thus, there is a still need to identify molecules able to regulate the inflammatory response. Lebecetin, a C-type lectin protein isolated from Macrovipera lebetina snake venom, was previously characterized as a platelet aggregation inhibitor and antitumor active biomolecule. In the present work, we investigated its effect on the production of some cytokines linked to inflammatory response and the underlying mechanisms in lipopolysaccharide (LPS)-induced THP1 macrophages. Interestingly, we found that lebecetin reduced the levels of the pro-inflammatory cytokines TNF-α, IL-6, and IL-8 while it partially increased LPS-induced secretion of the immunomodulatory cytokine IL-10. Furthermore, this modulatory effect was accompanied by decreased activation of ERK1/2, p38, AKT kinases and NF-κB along with reduced expression of αvß3 integrin. Thus, this study highlights the promising role of lebecetin as a natural biomolecule that could manage the inflammatory response involved in the development and progression of inflammatory diseases.


Subject(s)
Cytokines/metabolism , Viper Venoms/pharmacology , Animals , Humans , Interleukin-10/metabolism , Lectins, C-Type , Lipopolysaccharides , NF-kappa B/metabolism , Snake Venoms , Viperidae
4.
PLoS Negl Trop Dis ; 12(1): e0006160, 2018 01.
Article in English | MEDLINE | ID: mdl-29346371

ABSTRACT

Leishmaniases are neglected parasitic diseases in spite of the major burden they inflict on public health. The identification of novel drugs and targets constitutes a research priority. For that purpose we used Leishmania infantum initiation factor 4A (LieIF), an essential translation initiation factor that belongs to the DEAD-box proteins family, as a potential drug target. We modeled its structure and identified two potential binding sites. A virtual screening of a diverse chemical library was performed for both sites. The results were analyzed with an in-house version of the Self-Organizing Maps algorithm combined with multiple filters, which led to the selection of 305 molecules. Effects of these molecules on the ATPase activity of LieIF permitted the identification of a promising hit (208) having a half maximal inhibitory concentration (IC50) of 150 ± 15 µM for 1 µM of protein. Ten chemical analogues of compound 208 were identified and two additional inhibitors were selected (20 and 48). These compounds inhibited the mammalian eIF4I with IC50 values within the same range. All three hits affected the viability of the extra-cellular form of L. infantum parasites with IC50 values at low micromolar concentrations. These molecules showed non-significant toxicity toward THP-1 macrophages. Furthermore, their anti-leishmanial activity was validated with experimental assays on L. infantum intramacrophage amastigotes showing IC50 values lower than 4.2 µM. Selected compounds exhibited selectivity indexes between 19 to 38, which reflects their potential as promising anti-Leishmania molecules.


Subject(s)
Antiprotozoal Agents/isolation & purification , Antiprotozoal Agents/pharmacology , Drug Evaluation, Preclinical/methods , Eukaryotic Initiation Factor-4A/antagonists & inhibitors , Leishmania infantum/drug effects , Leishmania infantum/enzymology , Adenosine Triphosphatases/analysis , Adenosine Triphosphatases/antagonists & inhibitors , Binding Sites , Eukaryotic Initiation Factor-4A/chemistry , Inhibitory Concentration 50 , Models, Molecular , Molecular Docking Simulation , Parasitic Sensitivity Tests
5.
Mar Drugs ; 15(7)2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28726723

ABSTRACT

Conventional treatment of advanced colorectal cancer is associated with tumor resistance and toxicity towards normal tissues. Therefore, development of effective anticancer therapeutic alternatives is still urgently required. Nowadays, marine secondary metabolites have been extensively investigated due to the fact that they frequently exhibit anti-tumor properties. However, little attention has been given to terpenoids isolated from seaweeds. In this study, we isolated the halogenated monoterpene mertensene from the red alga Pterocladiella capillacea (S.G. Gmelin) Santelices and Hommersand and we highlight its inhibitory effect on the viability of two human colorectal adenocarcinoma cell lines HT29 and LS174. Interestingly, exposure of HT29 cells to different concentrations of mertensene correlated with the activation of MAPK ERK-1/-2, Akt and NF-κB pathways. Moreover, mertensene-induced G2/M cell cycle arrest was associated with a decrease in the phosphorylated forms of the anti-tumor transcription factor p53, retinoblastoma protein (Rb), cdc2 and chkp2. Indeed, a reduction of the cellular level of cyclin-dependent kinases CDK2 and CDK4 was observed in mertensene-treated cells. We also demonstrated that mertensene triggers a caspase-dependent apoptosis in HT29 cancer cells characterized by the activation of caspase-3 and the cleavage of poly (ADP-ribose) polymerase (PARP). Besides, the level of death receptor-associated protein TRADD increased significantly in a concentration-dependent manner. Taken together, these results demonstrate the potential of mertensene as a drug candidate for the treatment of colon cancer.


Subject(s)
Adenocarcinoma/drug therapy , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Colonic Neoplasms/drug therapy , G2 Phase Cell Cycle Checkpoints/drug effects , Monoterpenes/pharmacology , Signal Transduction/drug effects , Adenocarcinoma/metabolism , Caspases/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Colonic Neoplasms/metabolism , Cyclin-Dependent Kinases/metabolism , HT29 Cells , Humans , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
6.
Mol Carcinog ; 56(1): 18-35, 2017 01.
Article in English | MEDLINE | ID: mdl-26824338

ABSTRACT

Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5ß1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc.


Subject(s)
Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects , Colonic Neoplasms/drug therapy , Down-Regulation/drug effects , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/genetics , Viper Venoms/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Chickens , Colon/drug effects , Colon/metabolism , Colon/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Humans , Integrin beta1/metabolism , MAP Kinase Signaling System/drug effects , Mice, Nude , Models, Molecular , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Reactive Oxygen Species/metabolism , Vascular Endothelial Growth Factor A/metabolism , Viper Venoms/pharmacology
7.
Toxins (Basel) ; 8(7)2016 07 05.
Article in English | MEDLINE | ID: mdl-27399772

ABSTRACT

Melanoma, the most threatening form of skin cancer, has a very poor prognosis and is characterized by its very invasive and chemoresistant properties. Despite the recent promising news from the field of immunotherapy, there is an urgent need for new therapeutic approaches that are free of resistance mechanisms and side effects. Anti-neoplasic properties have been highlighted for different disintegrins from snake venom including Lebein; however, the exact effect of Lebein on melanoma has not yet been defined. In this study, we showed that Lebein blocks melanoma cell proliferation and induces a more differentiated phenotype with inhibition of extracellular signal-regulated kinase (ERK) phosphorylation and microphthalmia-associated transcription factor (MITF) overexpression. Melanoma cells became detached but were less invasive with upregulation of E-cadherin after Lebein exposure. Lebein induced a caspase-independent apoptotic program with apoptosis inducing factor (AIF), BCL-2-associated X protein (BAX) and Bim overexpression together with downregulation of B-cell lymphoma-2 (BCL-2). It generated a distinct response in reactive oxygen species (ROS) generation and p53 levels depending on the p53 cell line status (wild type or mutant). Therefore, we propose Lebein as a new candidate for development of potential therapies for melanoma.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Viper Venoms/pharmacology , Antigens, CD , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Phenotype , Phosphorylation , Signal Transduction/drug effects , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Time Factors
8.
Cancer Cell Int ; 16: 1, 2015.
Article in English | MEDLINE | ID: mdl-26839513

ABSTRACT

BACKGROUND: Development of alternative cancer-specific drugs would be of paramount importance to overcome toxicity toward normal tissues and tumor resistance. Here, we investigated the potential anti-tumoral effect of peel (Peph) and pulp polyphenolic extracts from the Tunisian quince Cydonia oblonga Miller on both no-tumorigenic cells NIH 3T3 Fibroblasts and HEK 293 cells and human colon adenocarcinoma LS174 cells. METHODS: Cell proliferation and cytotoxicity were measured with MTT and LDH assays respectively. Cell cycle distribution and the apoptosis levels were assessed by flow cytometry. Intracellular reactive oxygen species (ROS) levels were determined using the fluorescent probe CM-H2DCFDA. Western blot was used to further characterize cell death and analyze the signaling pathways affected by Peph treatment. The expression level of VEGF-A was evaluated by real time quantitative PCR and further verified by quantifying the secreted cytokines by enzyme-linked immunosorbent assay. RESULTS: We found that Peph extract displayed the highest anti-proliferative effect specifically on LS174 cells. However, each Peph phenolic compound alone did not exhibit any anti-proliferative activity, suggesting a synergistic effect of phenolic molecules. Such effect was associated with a cell cycle arrest in the G1/S phase, a caspase-independent apoptosis and an increase of the ROS production. Peph extract inhibited the pro-survival signaling pathway NFκB and suppressed the expression of various cellular markers known to be involved in cell cycling (cyclin D1) and angiogenesis (Vascular Endothelial Growth Factor, VEGF). Interestingly, the combination Peph extract and 5-FU exerted synergistic inhibitory effect on cell viability. CONCLUSION: These data propose the quince Peph extract as a promising cost effective non toxic drug to employ alone or in combination with conventional anti-colorectal cancer. Moreover, quince rich regimen may prevent the development and the progress of colon cancer.

SELECTION OF CITATIONS
SEARCH DETAIL