Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Amino Acids ; 55(5): 695-708, 2023 May.
Article in English | MEDLINE | ID: mdl-36944899

ABSTRACT

Glucose-6-phosphatase-α (G6Pase-α) catalyzes the hydrolysis of glucose-6-phosphate to glucose and functions as a key regulator in maintaining blood glucose homeostasis. Deficiency in G6Pase-α causes glycogen storage disease 1a (GSD1a), an inherited disorder characterized by life-threatening hypoglycemia and other long-term complications. We have developed a potential mRNA-based therapy for GSD1a and demonstrated that a human G6Pase-α (hG6Pase-α) variant harboring a single serine (S) to cysteine (C) substitution at the amino acid site 298 (S298C) had > twofold increase in protein expression, resulting in improved in vivo efficacy. Here, we sought to investigate the mechanisms contributing to the increased expression of the S298C variant. Mutagenesis of hG6Pase-α identified distinct protein variants at the 298 amino acid position with substantial reduction in protein expression in cultured cells. Kinetic analysis of expression and subcellular localization in mammalian cells, combined with cell-free in vitro translation assays, revealed that altered protein expression stemmed from differences in cellular protein stability rather than biosynthetic rates. Site-specific mutagenesis studies targeting other cysteines of the hG6Pase-α S298C variant suggest the observed improvements in stability are not due to additional disulfide bond formation. The glycosylation at Asparagine (N)-96 is critical in maintaining enzymatic activity and mutations at position 298 mainly affected glycosylated forms of hG6Pase-α. Finally, proteasome inhibition by lactacystin improved expression levels of unstable hG6Pase-α variants. Taken together, these data uncover a critical role for a single amino acid substitution impacting the stability of G6Pase-α and provide insights into the molecular genetics of GSD1a and protein engineering for therapeutic development.


Subject(s)
Glucose-6-Phosphatase , Glycogen Storage Disease Type I , Animals , Humans , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphatase/chemistry , Glucose-6-Phosphatase/metabolism , Glycogen Storage Disease Type I/genetics , Glycogen Storage Disease Type I/metabolism , Kinetics , Glucose/metabolism , Amino Acids , Mammals/metabolism
2.
Nat Commun ; 12(1): 3090, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035281

ABSTRACT

Glycogen Storage Disease 1a (GSD1a) is a rare, inherited metabolic disorder caused by deficiency of glucose 6-phosphatase (G6Pase-α). G6Pase-α is critical for maintaining interprandial euglycemia. GSD1a patients exhibit life-threatening hypoglycemia and long-term liver complications including hepatocellular adenomas (HCAs) and carcinomas (HCCs). There is no treatment for GSD1a and the current standard-of-care for managing hypoglycemia (Glycosade®/modified cornstarch) fails to prevent HCA/HCC risk. Therapeutic modalities such as enzyme replacement therapy and gene therapy are not ideal options for patients due to challenges in drug-delivery, efficacy, and safety. To develop a new treatment for GSD1a capable of addressing both the life-threatening hypoglycemia and HCA/HCC risk, we encapsulated engineered mRNAs encoding human G6Pase-α in lipid nanoparticles. We demonstrate the efficacy and safety of our approach in a preclinical murine model that phenotypically resembles the human condition, thus presenting a potential therapy that could have a significant therapeutic impact on the treatment of GSD1a.


Subject(s)
Disease Models, Animal , Genetic Therapy/methods , Glucose-6-Phosphatase/genetics , Glycogen Storage Disease/therapy , RNA, Messenger/genetics , Animals , Cell Line, Tumor , Cytokines/blood , Cytokines/metabolism , Glucose-6-Phosphatase/metabolism , Glycogen/metabolism , Glycogen Storage Disease/genetics , Glycogen Storage Disease/pathology , HeLa Cells , Humans , Liver/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Nanoparticles/administration & dosage , Nanoparticles/chemistry , RNA, Messenger/administration & dosage , RNA, Messenger/chemistry , Treatment Outcome , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...