Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Math Med Biol ; 39(4): 313-331, 2022 12 02.
Article in English | MEDLINE | ID: mdl-35698448

ABSTRACT

Chronic wounds, such as venous leg ulcers, are difficult to treat and can reduce the quality of life for patients. Clinical trials have been conducted to identify the most effective venous leg ulcer treatments and the clinical factors that may indicate whether a wound will successfully heal. More recently, mathematical modelling has been used to gain insight into biological factors that may affect treatment success but are difficult to measure clinically, such as the rate of oxygen flow into wounded tissue. In this work, we calibrate an existing mathematical model using a Bayesian approach with clinical data for individual patients to explore which clinical factors may impact the rate of wound healing for individuals. Although the model describes group-level behaviour well, it is not able to capture individual-level responses in all cases. From the individual-level analysis, we propose distributions for coefficients of clinical factors in a linear regression model, but ultimately find that it is difficult to draw conclusions about which factors lead to faster wound healing based on the existing model and data. This work highlights the challenges of using Bayesian methods to calibrate partial differential equation models to individual patient clinical data. However, the methods used in this work may be modified and extended to calibrate spatiotemporal mathematical models to multiple data sets, such as clinical trials with several patients, to extract additional information from the model and answer outstanding biological questions.


Subject(s)
Quality of Life , Varicose Ulcer , Humans , Bayes Theorem , Calibration , Varicose Ulcer/therapy , Wound Healing , Models, Theoretical
2.
J Infect Dis ; 226(2): 324-331, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35703955

ABSTRACT

BACKGROUND: Understanding the effect of immunity on Plasmodium falciparum clearance is essential for interpreting therapeutic efficacy studies designed to monitor emergence of artemisinin drug resistance. In low-transmission areas of Southeast Asia, where resistance has emerged, P. falciparum antibodies confound parasite clearance measures. However, variation in naturally acquired antibodies across Asian and sub-Saharan African epidemiological contexts and their impact on parasite clearance re yet to be quantified. METHODS: In an artemisinin therapeutic efficacy study, antibodies to 12 pre-erythrocytic and erythrocytic P. falciparum antigens were measured in 118 children with uncomplicated P. falciparum malaria in the Democratic Republic of Congo (DRC) and compared with responses in patients from Asian sites, described elsewhere. RESULTS: Parasite clearance half-life was shorter in DRC patients (median, 2 hours) compared with most Asian sites (median, 2-7 hours), but P. falciparum antibody levels and seroprevalences were similar. There was no evidence for an association between antibody seropositivity and parasite clearance half-life (mean difference between seronegative and seropositive, -0.14 to +0.40 hour) in DRC patients. CONCLUSIONS: In DRC, where artemisinin remains highly effective, the substantially shorter parasite clearance time compared with Asia was not explained by differences in the P. falciparum antibody responses studied.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Parasites , Animals , Antibody Formation , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Child , Democratic Republic of the Congo/epidemiology , Drug Resistance , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Plasmodium falciparum
3.
Front Cell Infect Microbiol ; 12: 804470, 2022.
Article in English | MEDLINE | ID: mdl-35463638

ABSTRACT

Introduction: Understanding the human immune response to Plasmodium falciparum gametocytes and its association with gametocytemia is essential for understanding the transmission of malaria as well as progressing transmission blocking vaccine candidates. Methods: In a multi-national clinical efficacy trial of artemisinin therapies (13 sites of varying transmission over South-East Asia and Africa), we measured Immunoglobulin G (IgG) responses to recombinant P. falciparum gametocyte antigens expressed on the gametocyte plasma membrane and leading transmission blocking vaccine candidates Pfs230 (Pfs230c and Pfs230D1M) and Pfs48/45 at enrolment in 1,114 participants with clinical falciparum malaria. Mixed effects linear and logistic regression were used to determine the association between gametocyte measures (gametocytemia and gametocyte density) and antibody outcomes at enrolment. Results: Microscopy detectable gametocytemia was observed in 11% (127/1,114) of participants at enrolment, and an additional 9% (95/1,114) over the follow-up period (up to day 42) (total 20% of participants [222/1,114]). IgG levels in response to Pfs230c, Pfs48/45 and Pfs230D1M varied across study sites at enrolment (p < 0.001), as did IgG seroprevalence for anti-Pfs230c and D1M IgG (p < 0.001), but not for anti-Pfs48/45 IgG (p = 0.159). In adjusted analyses, microscopy detectable gametocytemia at enrolment was associated with an increase in the odds of IgG seropositivity to the three gametocyte antigens (Pfs230c OR [95% CI], p: 1.70 [1.10, 2.62], 0.017; Pfs48/45: 1.45 [0.85, 2.46], 0.174; Pfs230D1M: 1.70 [1.03, 2.80], 0.037), as was higher gametocyte density at enrolment (per two-fold change in gametocyte density Pfs230c OR [95% CI], p: 1.09 [1.02, 1.17], 0.008; Pfs48/45: 1.05 [0.98, 1.13], 0.185; Pfs230D1M: 1.07 [0.99, 1.14], 0.071). Conclusion: Pfs230 and Pfs48/45 antibodies are naturally immunogenic targets associated with patent gametocytemia and increasing gametocyte density across multiple malaria endemic settings, including regions with emerging artemisinin-resistant P. falciparum.


Subject(s)
Malaria, Falciparum , Malaria , Antibodies, Protozoan , Antigens, Protozoan , Humans , Immunity, Humoral , Immunoglobulin G , Malaria, Falciparum/drug therapy , Plasmodium falciparum , Seroepidemiologic Studies
4.
Malar J ; 21(1): 75, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35248084

ABSTRACT

BACKGROUND: Malaria remains a major public health threat and tools sensitive to detect infections in low malaria transmission areas are needed to progress elimination efforts. Pregnant women are particularly vulnerable to malaria infections. Throughout pregnancy they access routine antenatal care, presenting a unique sentinel population to apply novel sero-surveillance tools to measure malaria transmission. The aim of this study was to quantify the dynamic antibody responses to multiple antigens during pregnancy so as to identify a single or multiple antibody response of exposure to malaria in pregnancy. METHODS: This study involved a secondary analysis of antibody responses to six parasite antigens [five commonly studied merozoite antigens and the variant surface antigen 2-chondroitin sulphate A (VAR2CSA), a pregnancy-specific erythrocytic antigen] measured by enzyme-linked immunosorbent assay (ELISA) over the gestation period until delivery (median of 7 measurements/woman) in 250 pregnant women who attended antenatal clinics located at the Thai-Myanmar border. A multivariate mixture linear mixed model was used to cluster the pregnant women into groups that have similar longitudinal antibody responses to all six antigens over the gestational period using a Bayesian approach. The variable-specific entropy was calculated to identify the antibody responses that have the highest influence on the classification of the women into clusters, and subsequent agreement with grouping of women based on exposure to malaria during pregnancy. RESULTS: Of the 250 pregnant women, 135 had a Plasmodium infection detected by light microscopy during pregnancy (39% Plasmodium falciparum only, 33% Plasmodium vivax only and 28% mixed/other species), defined as cases. The antibody responses to all six antigens accurately identified the women who did not have a malaria infection detected during pregnancy (93%, 107/115 controls). Antibody responses to P. falciparum merozoite surface protein 3 (PfMSP3) and P. vivax apical membrane antigen 1 (PvAMA1) were the least dynamic. Antibody responses to the antigens P. falciparum apical membrane antigen 1 (PfAMA1) and PfVAR2CSA were able to identify the majority of the cases more accurately (63%, 85/135). CONCLUSION: These findings suggest that the combination of antibodies, PfAMA1 and PfVAR2CSA, may be useful for sero-surveillance of malaria infections in pregnant women, particularly in low malaria transmission settings. Further investigation of other antibody markers is warranted considering these antibodies combined only detected 63% of the malaria infections during pregnancy.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Antibodies, Protozoan , Antibody Formation , Antigens, Protozoan , Bayes Theorem , Female , Humans , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Plasmodium falciparum , Pregnancy , Pregnant Women
5.
J Antimicrob Chemother ; 76(9): 2325-2334, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34179977

ABSTRACT

BACKGROUND: The efficacy of artemisinin-based combination therapies (ACTs), the first-line treatments for uncomplicated falciparum malaria, has been declining in malaria-endemic countries due to the emergence of malaria parasites resistant to these compounds. Novel alternative therapies are needed urgently to prevent the likely surge in morbidity and mortality due to failing ACTs. OBJECTIVES: This study investigates the efficacy of the combination of two novel drugs, OZ439 and DSM265, using a biologically informed within-host mathematical model. METHODS: A within-host model was developed, which accounts for the differential killing of these compounds against different stages of the parasite's life cycle and accommodates the pharmacodynamic interaction between the drugs. Data of healthy volunteers infected with falciparum malaria collected from four trials (three that administered OZ439 and DSM265 alone, and the fourth a combination of OZ439 and DSM265) were analysed. Model parameters were estimated in a hierarchical Bayesian framework. RESULTS: The posterior predictive simulations of our model predicted that 800 mg of OZ439 combined with 450 mg of DSM265, which are within the safe and tolerable dose range, can provide above 90% cure rates 42 days after drug administration. CONCLUSIONS: Our results show that the combination of OZ439 and DSM265 can be a promising alternative to replace ACTs. Our model can be used to inform future Phase 2 and 3 clinical trials of OZ439/DSM265, fast-tracking the deployment of this combination therapy in the regions where ACTs are failing. The dosing regimens that are shown to be efficacious and within safe and tolerable limits are suggested for future investigations.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Pyrimidines/pharmacokinetics , Triazoles/pharmacokinetics , Antimalarials/therapeutic use , Bayes Theorem , Dose-Response Relationship, Drug , Drug Therapy, Combination , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Plasmodium falciparum
6.
BMC Med ; 19(1): 121, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34044836

ABSTRACT

BACKGROUND: In the Greater Mekong Subregion (GMS), current malaria surveillance strategies rely on a network of village health volunteers (VHVs) reporting the results of rapid diagnostic tests (RDTs), known to miss many asymptomatic infections. Integration of more sensitive diagnostic molecular and serological measures into the VHV network may improve surveillance of residual malaria transmission in hard-to-reach areas in the region and inform targeted interventions and elimination responses. However, data on residual malaria transmission that would be captured by these measures in the VHV-led testing and treatment surveillance network in the GMS is unknown. METHODS: A total of 114 VHVs were trained to collect dried blood spots from villagers undergoing routine RDTs as part of VHV-led active and passive case detection from April 2015 to June 2016. Samples were subjected to molecular testing (quantitative polymerase chain reaction [qPCR]) to determine Plasmodium falciparum and P. vivax infection and serological testing (against P. falciparum and P. vivax antigens) to determine exposure to P. falciparum and P. vivax. RESULTS: Over 15 months, 114 VHVs performed 32,194 RDTs and collected samples for molecular (n = 13,157) and serological (n = 14,128) testing. The prevalence of molecular-detectable P. falciparum and P. vivax infection was 3.2% compared to the 0.16% prevalence of Plasmodium spp. by RDT, highlighting the large burden of infections undetected by standard surveillance. Peaks in anti-P. falciparum, but not P. vivax, merozoite IgG seroprevalence coincided with seasonal P. falciparum transmission peaks, even in those with no molecularly detectable parasites. At the individual level, antibody seropositivity was associated with reduced odds of contemporaneous P. falciparum (OR for PfCSP 0.51 [95%CI 0.35, 0.76], p = 0.001, PfAMA1 0.70 [95%CI 0.52, 0.93], p = 0.01, and PfMSP2 0.81 [95%CI 0.61, 1.08], p = 0.15), but not P. vivax infection (OR PvAMA1 1.02 [95%CI 0.73, 1.43], p = 0.89) indicating a potential role of immunity in protection against molecular-detectable P. falciparum parasitaemia. CONCLUSIONS: We demonstrated that integration and implementation of sample collection for molecular and serological surveillance into networks of VHV servicing hard-to-reach populations in the GMS is feasible, can capture significant levels of ongoing undetected seasonal malaria transmission and has the potential to supplement current routine RDT testing. Improving malaria surveillance by advancing the integration of molecular and serological techniques, through centralised testing approaches or novel point-of-contact tests, will advance progress, and tracking, towards malaria elimination goals in the GMS.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Cross-Sectional Studies , Humans , Malaria/diagnosis , Malaria/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Vivax/diagnosis , Malaria, Vivax/epidemiology , Myanmar/epidemiology , Plasmodium falciparum/genetics , Plasmodium vivax/genetics , Prevalence , Seroepidemiologic Studies
7.
Article in English | MEDLINE | ID: mdl-33685888

ABSTRACT

Most deaths from severe falciparum malaria occur within 24 h of presentation to a hospital. Intravenous (i.v.) artesunate is the first-line treatment for severe falciparum malaria, but its efficacy may be compromised by delayed parasitological responses. In patients with severe malaria, the life-saving benefit of the artemisinin derivatives is their ability to clear circulating parasites rapidly, before they can sequester and obstruct the microcirculation. To evaluate the dosing of i.v. artesunate for the treatment of artemisinin-sensitive and reduced ring stage sensitivity to artemisinin severe falciparum malaria infections, Bayesian pharmacokinetic-pharmacodynamic modeling of data from 94 patients with severe malaria (80 children from Africa and 14 adults from Southeast Asia) was performed. Assuming that delayed parasite clearance reflects a loss of ring stage sensitivity to artemisinin derivatives, the median (95% credible interval) percentage of patients clearing ≥99% of parasites within 24 h (PC24≥99%) for standard (2.4 mg/kg body weight i.v. artesunate at 0 and 12 h) and simplified (4 mg/kg i.v. artesunate at 0 h) regimens was 65% (52.5% to 74.5%) versus 44% (25% to 61.5%) for adults, 62% (51.5% to 74.5%) versus 39% (20.5% to 58.5%) for larger children (≥20 kg), and 60% (48.5% to 70%) versus 36% (20% to 53.5%) for smaller children (<20 kg). The upper limit of the credible intervals for all regimens was below a PC24≥99% of 80%, a threshold achieved on average in clinical studies of severe falciparum malaria infections. In severe falciparum malaria caused by parasites with reduced ring stage susceptibility to artemisinin, parasite clearance is predicted to be slower with both the currently recommended and proposed simplified i.v. artesunate dosing regimens.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Adult , Africa , Antimalarials/therapeutic use , Artesunate/therapeutic use , Asia, Southeastern , Bayes Theorem , Child , Computer Simulation , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Plasmodium falciparum
8.
Trends Parasitol ; 36(11): 884-887, 2020 11.
Article in English | MEDLINE | ID: mdl-32771284

ABSTRACT

Resistance to the artemisinin derivatives, our most effective antimalarial drugs, has not manifest as a classical resistance phenotype in which parasites can tolerate higher drug concentrations. Instead, resistant parasites have an altered maturation. We hypothesize that the short half-life of artemisinin concentrations is an unanticipated driver of this novel resistance phenotype.


Subject(s)
Artemisinins/pharmacology , Drug Resistance , Plasmodium/drug effects , Selection, Genetic/drug effects , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Humans , Inhibitory Concentration 50
9.
Pediatr Allergy Immunol ; 31(8): 913-919, 2020 11.
Article in English | MEDLINE | ID: mdl-32519350

ABSTRACT

BACKGROUND: The relationships between childhood wheeze phenotypes and subsequent allergic conditions other than asthma, including hay fever, eczema and sensitization, have not been widely reported. We aimed to investigate this relationship up to late adolescence. METHODS: Using five childhood wheeze phenotypes defined from 620 children in a high-atopy risk birth cohort (Melbourne Atopy Cohort Study), we investigated their relationships with sensitization, eczema, hay fever and fractional exhaled nitric oxide (FeNO) at ages 12 and/or 18 years using logistic and linear regression models. RESULTS: 'Early Persistent wheeze' was associated with the increased risk of eczema (odds ratio: 3.69; 95% CI: 1.23, 11.12) and sensitization (4.52; 1.50, 13.64) at 12 years. 'Intermediate Onset wheeze' was associated with the increased risk of eczema at 12 years (2.57; 1.11, 5.97), hay fever at 12 (2.87; 1.44, 5.74) and 18 years (2.19; 1.20, 4.02), sensitization at 12 (2.25; 1.17, 4.34) and 18 years (2.46; 1.18, 5.12), and raised FeNO at 18 years. 'Late Onset wheeze' was associated with the increased risk of hay fever at 12 (5.18; 1.11, 24.20) and 18 years (4.20; 1.03, 17.11) and sensitization at 12 years (3.27; 0.81, 13.27). In contrast, 'Early Transient wheeze' was associated with the reduced risk of eczema (0.44; 0.20, 0.96), hay fever (0.57; 0.33, 0.99) and sensitization (0.59; 0.35, 0.99) at 18 years and a lower FeNO compared with 'Never/Infrequent wheezers'. CONCLUSIONS: Persistent wheeze phenotypes were associated with allergic outcomes up to 18 years with 'Intermediate Onset wheeze' being the most atopic group. In contrast, 'Early Transient wheezers' had less risk of allergic outcomes at 18 years. This protective effect may reassure parents of wheezy infants and young children.


Subject(s)
Asthma , Hypersensitivity, Immediate , Hypersensitivity , Adolescent , Asthma/epidemiology , Child , Child, Preschool , Cohort Studies , Humans , Hypersensitivity, Immediate/epidemiology , Infant , Respiratory Sounds
10.
Trends Parasitol ; 36(5): 413-426, 2020 05.
Article in English | MEDLINE | ID: mdl-32298629

ABSTRACT

Antimalarial drugs are vital for treating malaria and controlling transmission. Measuring drug efficacy in the field requires large clinical trials and thus we have identified proxy measures of drug efficacy such as the parasite clearance curve. This is often assumed to measure the rate of drug activity against parasites and is used to predict optimal treatment regimens required to completely clear a blood-stage infection. We discuss evidence that the clearance curve is not measuring the rate of drug killing. This has major implications for how we assess optimal treatment regimens, as well as how we prioritise new drugs in the drug development pipeline.


Subject(s)
Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Antimalarials/pharmacology , Humans , Parasitemia/drug therapy , Parasitemia/parasitology , Plasmodium falciparum/drug effects , Plasmodium falciparum/physiology , Treatment Outcome
11.
J Infect Dis ; 220(7): 1178-1187, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31075171

ABSTRACT

BACKGROUND: Antibodies to the blood stages of malaria parasites enhance parasite clearance and antimalarial efficacy. The antibody subclass and functions that contribute to parasite clearance during antimalarial treatment and their relationship to malaria transmission intensity have not been characterized. METHODS: Levels of immunoglobulin G (IgG) subclasses and C1q fixation in response to Plasmodium falciparum merozoite antigens (erythrocyte-binding antigen [EBA] 175RIII-V, merozoite surface protein 2 [MSP-2], and MSP-142) and opsonic phagocytosis of merozoites were measured in a multinational trial assessing the efficacy of artesunate therapy across 11 Southeast Asian sites. Regression analyses assessed the effects of antibody seropositivity on the parasite clearance half-life (PC½), having a PC½ of ≥5 hours, and having parasitemia 3 days after treatment. RESULTS: IgG3, followed by IgG1, was the predominant IgG subclass detected (seroprevalence range, 5%-35% for IgG1 and 27%-41% for IgG3), varied across study sites, and was lowest in study sites with the lowest transmission intensity and slowest mean PC½. IgG3, C1q fixation, and opsonic-phagocytosis seropositivity were associated with a faster PC½ (range of the mean reduction in PC½, 0.47-1.16 hours; P range, .001-.03) and a reduced odds of having a PC½ of ≥5 hours and having parasitemia 3 days after treatment. CONCLUSIONS: The prevalence of IgG3, complement-fixing antibodies, and merozoite phagocytosis vary according to transmission intensity, are associated with faster parasite clearance, and may be sensitive surrogates of an augmented clearance capacity of infected erythrocytes. Determining the functional immune mechanisms associated with parasite clearance will improve characterization of artemisinin resistance.


Subject(s)
Antimalarials/therapeutic use , Artesunate/therapeutic use , Immunity, Innate , Malaria, Falciparum/drug therapy , Malaria, Falciparum/immunology , Plasmodium falciparum/genetics , Adolescent , Adult , Aged , Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Child , Child, Preschool , Drug Resistance, Microbial , Erythrocytes/immunology , Erythrocytes/parasitology , Female , Humans , Immunoglobulin G/blood , Infant , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Male , Merozoites/immunology , Middle Aged , Parasitemia/drug therapy , Phagocytosis/immunology , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Protozoan Proteins/immunology , Seroepidemiologic Studies , Treatment Outcome , Young Adult
12.
PLoS Comput Biol ; 15(1): e1006568, 2019 01.
Article in English | MEDLINE | ID: mdl-30653522

ABSTRACT

Laboratory models are often used to understand the interaction of related pathogens via host immunity. For example, recent experiments where ferrets were exposed to two influenza strains within a short period of time have shown how the effects of cross-immunity vary with the time between exposures and the specific strains used. On the other hand, studies of the workings of different arms of the immune response, and their relative importance, typically use experiments involving a single infection. However, inferring the relative importance of different immune components from this type of data is challenging. Using simulations and mathematical modelling, here we investigate whether the sequential infection experiment design can be used not only to determine immune components contributing to cross-protection, but also to gain insight into the immune response during a single infection. We show that virological data from sequential infection experiments can be used to accurately extract the timing and extent of cross-protection. Moreover, the broad immune components responsible for such cross-protection can be determined. Such data can also be used to infer the timing and strength of some immune components in controlling a primary infection, even in the absence of serological data. By contrast, single infection data cannot be used to reliably recover this information. Hence, sequential infection data enhances our understanding of the mechanisms underlying the control and resolution of infection, and generates new insight into how previous exposure influences the time course of a subsequent infection.


Subject(s)
Adaptive Immunity/immunology , Immunity, Innate/immunology , Influenza A virus , Models, Immunological , Orthomyxoviridae Infections/immunology , Animals , Computational Biology , Ferrets , Influenza A virus/immunology , Influenza A virus/pathogenicity
13.
Article in English | MEDLINE | ID: mdl-30249691

ABSTRACT

Antimalarial treatment currently relies on an artemisinin derivative and a longer-acting partner drug. With the emergence of resistance to the artemisinin derivatives and the potential pressure this exerts on the partner drugs, the impact of resistance to each drug on efficacy needs to be investigated. An in silico exploration of dihydroartemisinin-piperaquine and mefloquine-artesunate, two artemisinin-based combination therapies that are commonly used in Southeast Asia, was performed. The percentage of treatment failures was simulated from a within-host pharmacokinetic-pharmacodynamic (PKPD) model, assuming that parasites developed increasing levels of (i) artemisinin derivative resistance or (ii) concomitant resistance to both the artemisinin derivative and the partner drug. Because the exact nature of how resistant Plasmodium falciparum parasites respond to treatment is unknown, we examined the impact on treatment failure rates of artemisinin resistance that (i) reduced the maximal killing rate, (ii) increased the concentration of drug required for 50% killing, or (iii) shortened the window of parasite stages that were susceptible to artemisinin derivatives until the drugs had no effect on the ring stages. The loss of the ring-stage activity of the artemisinin derivative caused the greatest increase in the treatment failure rate, and this result held irrespective of whether partner drug resistance was assumed to be present or not. To capture the uncertainty regarding how artemisinin derivative and partner drug resistance affects the assumed concentration-killing effect relationship, a variety of changes to this relationship should be considered when using within-host PKPD models to simulate clinical outcomes to guide treatment strategies for resistant infections.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance/drug effects , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Artesunate/pharmacology , Computer Simulation , Drug Therapy, Combination , Humans , Mefloquine/pharmacology , Models, Biological , Plasmodium falciparum/isolation & purification , Quinolines/pharmacology , Treatment Failure
14.
J Gastroenterol Hepatol ; 32(4): 797-802, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27784128

ABSTRACT

BACKGROUND AND AIM: Women who are homozygous for the p.C282Y mutation in the HFE gene are at much lower risk of iron overload-related disease than p.C282Y homozygous men, presumably because of the iron-depleting effects of menstruation and pregnancy. We used data from a population cohort study to model the impact of menstruation cessation at menopause on serum ferritin (SF) levels in female p.C282Y homozygotes, with p.C282Y/p.H63D simple or compound heterozygotes and those with neither p.C282Y nor p.H63D mutations (HFE wild types) as comparison groups. METHODS: A sample of the Melbourne Collaborative Cohort Study was selected for the "HealthIron" study (n = 1438) including all HFE p.C282Y homozygotes plus a random sample stratified by HFE-genotype (p.C282Y and p.H63D). The relationship between the natural logarithm of SF and time since menopause was examined using linear mixed models incorporating spline smoothing. RESULTS: For p.C282Y homozygotes, SF increased by a factor of 3.6 (95% CI (1.8, 7.0), P < 0.001) during the first 10 years postmenopause, after which SF continued to increase but at less than half the previous rate. In contrast, SF profiles for other HFE genotype groups increase more gradually and did not show a distinction between premenopausal and postmenopausal SF levels. Only p.C282Y homozygotes had predicted SF exceeding 200 µg/L postmenopause, but the projected SF did not increase the risk of iron overload-related disease. CONCLUSIONS: These data provide the first documented evidence that physiological blood loss is a major factor in determining the marked gender difference in expression of p.C282Y homozygosity.


Subject(s)
Ferritins/blood , Genetic Predisposition to Disease/genetics , Genotype , Hemochromatosis Protein/genetics , Hemochromatosis/genetics , Homozygote , Menopause/blood , Menopause/genetics , Mutation/genetics , Adult , Aged , Australia , Cohort Studies , Female , Humans , Middle Aged
15.
Malar J ; 15: 137, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26935745

ABSTRACT

BACKGROUND: In vitro drug susceptibility testing of malaria parasites remains an important component of surveillance for anti-malarial drug resistance. The half-maximal inhibition of growth (IC50) is the most commonly reported parameter expressing drug susceptibility, derived by a variety of statistical approaches, each with its own advantages and disadvantages. METHODS: In this study, licensed computer programs WinNonlin and GraphPad Prism 6.0, and the open access programs HN-NonLin, Antimalarial ICEstimator (ICE), and In Vitro Analysis and Reporting Tool (IVART) were tested for their ease of use and ability to estimate reliable IC50 values from raw drug response data from 31 Plasmodium falciparum and 29 P. vivax clinical isolates tested with five anti-malarial agents: chloroquine, amodiaquine, piperaquine, mefloquine, and artesunate. RESULTS: The IC50 and slope estimates were similar across all statistical packages for all drugs tested in both species. There was good correlation of results derived from alternative statistical programs and non-linear mixed-effects modelling (NONMEM) which models all isolate data simultaneously. The user-friendliness varied between packages. While HN-NonLin and IVART allow users to enter the data in 96-well format, IVART and GraphPad Prism 6.0 are capable to analyse multiple isolates and drugs in parallel. WinNonlin, GraphPad Prism 6.0, IVART, and ICE provide alerts for non-fitting data and incorrect data entry, facilitating data interpretation. Data analysis using WinNonlin or ICE took the longest computationally, whilst the offline ability of GraphPad Prism 6.0 to analyse multiple isolates and drugs simultaneously made it the fastest among the programs tested. CONCLUSION: IC50 estimates obtained from the programs tested were comparable. In view of processing time and ease of analysis, GraphPad Prism 6.0 or IVART are best suited for routine and large-scale drug susceptibility testing.


Subject(s)
Antimalarials/pharmacology , Computer Simulation , Parasitic Sensitivity Tests/methods , Plasmodium falciparum/drug effects , Plasmodium vivax/drug effects , Software , Computational Biology , Drug Resistance/drug effects , Humans , Inhibitory Concentration 50 , Internet , Malaria, Falciparum/parasitology , Malaria, Vivax/parasitology
16.
Proc Natl Acad Sci U S A ; 113(5): 1333-8, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26787864

ABSTRACT

In advanced age, decreased CD8(+) cytotoxic T-lymphocyte (CTL) responses to novel pathogens and cancer is paralleled by a decline in the number and function of naïve CTL precursors (CTLp). Although the age-related fall in CD8(+) T-cell numbers is well established, neither the underlying mechanisms nor the extent of variation for different epitope specificities have been defined. Furthermore, naïve CD8(+) T cells expressing high levels of CD44 accumulate with age, but it is unknown whether this accumulation reflects their preferential survival or an age-dependent driver of CD8(+) T-cell proliferation. Here, we track the number and phenotype of four influenza A virus (IAV)-specific CTLp populations in naïve C57BL/6 (B6) mice during aging, and compare T-cell receptor (TCR) clonal diversity for the CD44hi and CD44lo subsets of one such population. We show differential onset of decline for several IAV-specific CD8(+) T-cell populations with advanced age that parallel age-associated changes in the B6 immunodominance hierarchy, suggestive of distinct impacts of aging on different epitope-specific populations. Despite finding no evidence of clonal expansions in an aged, epitope-specific TCR repertoire, nonrandom alterations in TCR usage were observed, along with elevated CD5 and CD8 coreceptor expression. Collectively, these data demonstrate that naïve CD8(+) T cells expressing markers of heightened self-recognition are selectively retained, but not clonally expanded, during aging.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Animals , Mice , Mice, Inbred C57BL
17.
Parasitology ; 142(11): 1351-63, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26118403

ABSTRACT

Visual displays of data in the parasitology literature are often presented in a way which is not very informative regarding the distribution of the data. An example being simple barcharts with half an error bar on top to display the distribution of parasitaemia and biomarkers of host immunity. Such displays obfuscate the shape of the data distribution through displaying too few statistical measures to explain the spread of all the data and selecting statistical measures which are influenced by skewness and outliers. We describe more informative, yet simple, visual representations of the data distribution commonly used in statistics and provide guidance with regards to the display of estimates of population parameters (e.g. population mean) and measures of precision (e.g. 95% confidence interval) for statistical inference. In this article we focus on visual displays for numerical data and demonstrate such displays using an example dataset consisting of total IgG titres in response to three Plasmodium blood antigens measured in pregnant women and parasitaemia measurements from the same study. This tutorial aims to highlight the importance of displaying the data distribution appropriately and the role such displays have in selecting statistics to summarize its distribution and perform statistical inference.


Subject(s)
Data Interpretation, Statistical , Parasitology/statistics & numerical data , Computer Graphics , Female , Humans , Pregnancy , Publications , Statistical Distributions
18.
Malar J ; 14: 221, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26017553

ABSTRACT

BACKGROUND: Plasmodium falciparum infections adversely affect pregnancy. Anti-malarial treatment failure is common. The objective of this study was to examine the duration of persistent parasite carriage following anti-malarial treatment in pregnancy. METHODS: The data presented here are a collation from previous studies carried out since 1994 in the Shoklo Malaria Research Unit (SMRU) on the Thailand-Myanmar border and performed using the same unique methodology detailed in the Materials and Methods section. Screening for malaria by microscopy is a routine part of weekly antenatal care (ANC) visits and therapeutic responses to anti-malarials were assessed in P. falciparum malaria cases. Women with microscopy confirmed P. falciparum malaria had a PCR blood spot from a finger-prick sample collected. Parasite DNA was extracted from the blood-spot samples using saponin lysis/Chelex extraction method and genotyped using polymorphic segments of MSP1, MSP2 and GLURP. Recurrent infections were classified by genotyping as novel, recrudescent or indeterminate. Factors associated with time to microscopy-detected recrudescence were analysed using multivariable regression techniques. RESULTS: From December 1994 to November 2009, 700 women were treated for P. falciparum and there were 909 recurrent episodes (481 novel and 428 recrudescent) confirmed by PCR genotyping. Most of the recurrences, 85% (770/909), occurred after treatment with quinine monotherapy, artesunate monotherapy or artesunate-clindamycin. The geometric mean number of days to recurrence was significantly shorter in women with recrudescent infection, 24.5 (95%: 23.4-25.8), compared to re-infection, 49.7 (95%: 46.9-52.7), P<0.001. The proportion of recrudescent P. falciparum infections that occurred after days 28, 42 and 63 from the start of treatment was 29.1% (124/428), 13.3% (57/428) and 5.6% (24/428). Recrudescent infections≥100 days after treatment occurred with quinine and mefloquine monotherapy, and quinine+clindamycin and artesunate+atovaquone-proguanil combination therapy. Treatments containing an artemisinin derivative or an intercalated Plasmodium vivax infection increased the geometric mean interval to recrudescence by 1.28-fold (95% CI: 1.09-1.51) and 2.19-fold (1.77-2.72), respectively. Intervals to recrudescence were decreased 0.83-fold (0.73-0.95) if treatment was not fully supervised (suggesting incomplete adherence) and 0.98-fold (0.96-0.99) for each doubling in baseline parasitaemia. CONCLUSIONS: Prolonged time to recrudescence may occur in pregnancy, regardless of anti-malarial treatment. Long intervals to recrudescence are more likely with the use of artemisinin-containing treatments and also observed with intercalated P. vivax infections treated with chloroquine. Accurate determination of drug efficacy in pregnancy requires longer duration of follow-up, preferably until delivery or day 63, whichever occurs last.


Subject(s)
Antimalarials/therapeutic use , Genotype , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Plasmodium falciparum/physiology , Adolescent , Adult , Antimalarials/pharmacology , Female , Humans , Longitudinal Studies , Parasitemia/drug therapy , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Polymerase Chain Reaction , Pregnancy , Prospective Studies , Protozoan Proteins/genetics , Recurrence , Thailand , Time Factors , Young Adult
19.
Biom J ; 57(2): 286-303, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25287055

ABSTRACT

Methods to examine whether genetic and/or environmental sources can account for the residual variation in ordinal family data usually assume proportional odds. However, standard software to fit the non-proportional odds model to ordinal family data is limited because the correlation structure of family data is more complex than for other types of clustered data. To perform these analyses we propose the non-proportional odds multivariate logistic regression model and take a simulation-based approach to model fitting using Markov chain Monte Carlo methods, such as partially collapsed Gibbs sampling and the Metropolis algorithm. We applied the proposed methodology to male pattern baldness data from the Victorian Family Heart Study.


Subject(s)
Biometry/methods , Pedigree , Algorithms , Female , Genotype , Humans , Logistic Models , Male , Markov Chains , Multivariate Analysis , Phenotype
20.
J Gastroenterol Hepatol ; 30(4): 719-25, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25311314

ABSTRACT

BACKGROUND AND AIM: The risk of hemochromatosis-related morbidity for HFE simple heterozygosity for either the C282Y or H63D substitutions in the HFE protein was assessed using a prospective community-based cohort study. METHODS: HFE genotypes were measured for 31,192 persons of northern European descent, aged between 40 and 69 years when recruited to the Melbourne Collaborative Cohort Study, and subjects were followed for an average of 12 years. For a random sample of 1438 participants stratified according to HFE genotype, two sets of biochemical iron indices performed 12 years apart and, at follow-up only, the presence/absence of six disease features associated with hereditary hemochromatosis were obtained. Summary data for 257 (139 female) C282Y simple heterozygotes and 123 (74 female) H63D simple heterozygotes were compared with 330 (181 female) controls with neither HFE mutation. RESULTS: At baseline, mean transferrin saturation (TS) (95% confidence interval) and prevalence of TS > 55% were 35.14% (33.25, 37.04) and 3/112 (3%), 33.03% (29.9, 36.15) and 0/39 (0%), and 29.67% (27.93, 31.4) and 3/135 (2%) for C282Y, H63D and wild-type male participants, respectively. At follow-up, mean TS levels remained similar to baseline levels for both men and women irrespective of simple heterozygosity for either mutation. No HFE C282Y or H63D simple heterozygotes had documented iron overload (based on hepatic iron measures or serum ferritin greater than 1000 mg/L at baseline with documented therapeutic venesection). CONCLUSION: No documented iron overload was observed for HFE simple heterozygotes for either C282Y or H63D, and morbidity for both HFE simple heterozygote groups was similar to that of HFE wild-type participants.


Subject(s)
Hemochromatosis/genetics , Heterozygote , Histocompatibility Antigens Class I/genetics , Membrane Proteins/genetics , Adult , Aged , Cohort Studies , Female , Genotype , Hemochromatosis/epidemiology , Hemochromatosis Protein , Humans , Iron Overload , Male , Middle Aged , Morbidity , Prospective Studies , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...