Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38675143

ABSTRACT

Diabetes, characterized by elevated blood sugar levels, poses significant health and economic risks, correlating with complications like cardiovascular disease, kidney failure, and blindness. Dipeptidyl peptidase-4 (DPP-4), also referred to as T-cell activation antigen CD26 (EC 3.4.14.5.), plays a crucial role in glucose metabolism and immune function. Inhibiting DPP-4 was anticipated as a potential new therapy for diabetes. Therefore, identification of plant-based natural inhibitors of DPP-4 would help in eradicating diabetes worldwide. Here, for the identification of the potential natural inhibitors of DPP-4, we developed a phytochemicals library consisting of over 6000 phytochemicals detected in 81 medicinal plants that exhibited anti-diabetic potency. The library has been docked against the target proteins, where isorhamnetin, Benzyl 5-Amino-5-deoxy-2,3-O-isopropyl-alpha-D-mannofuranoside (DTXSID90724586), and 5-Oxo-7-[4-(trifluoromethyl) phenyl]-4H,6H,7H-[1,2]thiazolo[4,5-b]pyridine 3-carboxylic acid (CHEMBL3446108) showed binding affinities of -8.5, -8.3, and -8.3 kcal/mol, respectively. These compounds exhibiting strong interactions with DPP-4 active sites (Glu205, Glu206, Tyr547, Trp629, Ser630, Tyr662, His740) were identified. ADME/T and bioactivity predictions affirmed their pharmacological safety. Density functional theory calculations assessed stability and reactivity, while molecular dynamics simulations demonstrated persistent stability. Analyzing parameters like RMSD, RG, RMSF, SASA, H-bonds, MM-PBSA, and FEL confirmed stable protein-ligand compound formation. Principal component analysis provided structural variation insights. Our findings suggest that those compounds might be possible candidates for developing novel inhibitors targeting DPP-4 for treating diabetes.

2.
Chem Biodivers ; 21(3): e202301661, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38359057

ABSTRACT

Both diabetes and cancer pose significant threats to public health. To overcome these challenges, nanobiotechnology offers innovative solutions for the treatment of these diseases. However, the synthesis of nanoparticles can be complex, costly and environmentally toxic. Therefore, in this study, we successfully synthesized Camellia sinensis silver nanoparticles (CS-AgNPs) biologically from methanolic leaf extract of C. sinensis and as confirmed by the visual appearance which exhibited strong absorption at 456 nm in UV-visible spectroscopy. The fourier transform infrared spectroscopy (FTIR) analysis revealed that phytochemicals of C. sinensis were coated with AgNPs. Scanning electron microscopy (SEM) analysis showed the spherical shape of CS-AgNPs, with a size of 15.954 nm, while X-ray diffraction spectrometry (XRD) analysis detected a size of 20.32 nm. Thermogravimetric analysis (TGA) indicated the thermal stability of CS-AgNPs. The synthesized CS-AgNPs significantly inhibited the ehrlich ascites carcinoma (EAC) cell growth with 53.42±1.101 %. The EAC cell line induced mice exhibited increased level of the serum aspartate aminotransferase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP), however this elevated serum parameter significantly reduced and controlled by the treatment with CS-AgNPs. Moreover, in a streptozotocin-induced diabetic mice model, CS-AgNPs greatly reduced blood glucose, total cholesterol, triglyceride, low-density lipoprotein (LDL) and creatinine levels. These findings highlight that the synthesized CS-AgNPs have significant anticancer and antidiabetic activities that could be used as promising particles for the treatment of these major diseases. However, pre-clinical and clinical trial should be addressed before use this particles as therapeutics agents.


Subject(s)
Camellia sinensis , Diabetes Mellitus, Experimental , Metal Nanoparticles , Neoplasms , Mice , Animals , Metal Nanoparticles/chemistry , Silver/chemistry , Camellia sinensis/metabolism , Diabetes Mellitus, Experimental/drug therapy , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents , X-Ray Diffraction
3.
Front Chem ; 11: 1273408, 2023.
Article in English | MEDLINE | ID: mdl-38075499

ABSTRACT

An excessive amount of multidrug-resistant Staphylococcus aureus is commonly associated with actinic keratosis (AK) and squamous cell carcinoma (SCC) by secreted virulence products that induced the chronic inflammation leading to skin cancer which is regulated by staphylococcal accessory regulator (SarA). It is worth noting that there is currently no existing published study that reports on the inhibitory activity of phytochemicals derived from Santalum album on the SarA protein through in silico approach. Therefore, our study has been designed to find the potential inhibitors of S. aureus SarA protein from S. album-derived phytochemicals. The molecular docking study was performed targeting the SarA protein of S. aureus, and CID:5280441, CID:162350, and CID: 5281675 compounds showed the highest binding energy with -9.4 kcal/mol, -9.0 kcal/mol, and -8.6 kcal/mol respectively. Further, molecular dynamics simulation revealed that the docked complexes were relatively stable during the 100 ns simulation period whereas the MMPBSA binding free energy proposed that the ligands were sustained with their binding site. All three complexes were found to be similar in distribution with the apoprotein through PCA analysis indicating conformational stability throughout the MD simulation. Moreover, all three compounds' ADMET profiles revealed positive results, and the AMES test did not show any toxicity whereas the pharmacophore study also indicates a closer match between the pharmacophore model and the compounds. After comprehensive in silico studies we evolved three best compounds, namely, Vitexin, Isovitexin, and Orientin, which were conducted in vitro assay for further confirmation of their inhibitory activity and results exhibited all of these compounds showed strong inhibitory activity against S. aureus. The overall result suggests that these compounds could be used as a natural lead to inhibit the pathogenesis of S. aureus and antibiotic therapy for S. aureus-associated skin cancer in humans as well.

4.
Int J Alzheimers Dis ; 2023: 8877757, 2023.
Article in English | MEDLINE | ID: mdl-37744007

ABSTRACT

Alzheimer's disease (AD) is a serious threat to the global health care system and is brought on by a series of factors that cause neuronal dysfunction and impairment in memory and cognitive decline. This study investigated the therapeutic potential of phytochemicals that belong to the ten regularly used spice plants, based on their binding affinity with AD-associated proteins. Comprehensive docking studies were performed using AutoDock Vina in PyRx followed by molecular dynamic (MD) simulations using AMBER 14. The docking study of the chosen molecules revealed the binding energies of their interactions with the target proteins, while MD simulations were carried out to verify the steadiness of bound complexes. Through the Lipinski filter and admetSAR analysis, the chosen compounds' pharmacokinetic characteristics and drug likeness were also examined. The pharmacophore mapping study was also done and analyzed for best selected molecules. Additionally, principal component analysis (PCA) was used to examine how the general motion of the protein changed. The results showed quercetin and myricetin to be potential inhibitors of AChE and alpha-amyrin and beta-chlorogenin to be potential inhibitors of BuChE, exhibiting best binding energies comparable to those of donepezil, used as a positive control. The multiple descriptors from the simulation study, root mean square deviation (RMSD), root mean square fluctuation (RMSF), hydrogen bond, radius of gyration (Rg), and solvent-accessible surface areas (SASA), confirm the stable nature of the protein-ligand complexes. Molecular mechanic Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations indicated the energetically favorable binding of the ligands to the protein. Finally, according to pharmacokinetic properties and drug likeness, characteristics showed that quercetin and myricetin for AChE and alpha-amyrin and beta-chlorogenin for BuChE were found to be the most effective agents for treating the AD.

5.
In Silico Pharmacol ; 11(1): 14, 2023.
Article in English | MEDLINE | ID: mdl-37255739

ABSTRACT

The tea plant (Camellia sinensis) belongs to the family Theaceae and contains many phytochemicals that are effective against various diseases, including neurodegenerative disorders. In this study, we aimed to characterize the phytochemicals present in the methanolic and n-hexane leaf extracts of C. sinensis using GC-MS, FTIR, and UV-visible analysis. We detected a total of 19 compounds of different chemical classes. We also performed molecular docking studies using the GC-MS detected phytochemicals, targeting acetylcholinesterase (AChE, PBD ID: 4BDT) and butyrylcholinesterase (BChE, PDB ID: 6QAB), which are responsible for the breakdown of the neurotransmitter acetylcholine (ACh). This breakdown leads to dementia and cognitive decline in Alzheimer's patients. The compounds Ergosta-7,22-dien-3-ol, (3.beta.,5.alpha.,22E)- and Benzene, 1,3-bis(1,1-dimethylethyl) showed better binding affinity against AChE, while dl-.alpha.-Tocopherol and Ergosta-7,22-dien-3-ol, (3.beta.,5.alpha.,22E)- showed better binding affinity against BChE. We determined the stability and rigidity of these best docked complexes through molecular dynamics simulation for a period of 100 ns. All complexes showed stability in terms of SASA, Rg, and hydrogen bonds, but some variations were found in the RMSD values. Our ADMET analysis revealed that all lead compounds are non-toxic. Therefore, these compounds could be potential inhibitors of AChE and BChE.

6.
Front Mol Biosci ; 10: 1278701, 2023.
Article in English | MEDLINE | ID: mdl-38601799

ABSTRACT

Adenanthera pavonina is a medicinal plant with numerous potential secondary metabolites showing a significant level of antidiabetic activity. The objective of the current study was to identify potential phytochemicals from the methanolic leaf extract of Adenanthera pavonina as therapeutic agents against diabetes mellitus using GC-MS and in silico methods. The GC-MS analysis of the leaf extract revealed a total of 17 phytochemicals. Molecular docking was performed using these phytochemicals, targeting the mutated insulin receptor tyrosine kinase (5hhw), which inhibits glucose uptake by cells. Diazoprogesterone (-9.2 kcal/mol), 2,4,4,7a-Tetramethyl-1-(3-oxobutyl)octahydro-1H-indene-2-carboxylic acid (-6.9 kcal/mol), and 2-Naphthalenemethanol, decahydro-.alpha.,.alpha.,4a-trimethyl-8-methylene-, [2R-(2.alpha.,4a.alpha.,8a.beta.)] (-6.6 kcal/mol) exhibited better binding with the target protein. The ADMET analysis was performed for the top three compounds with the best docking scores, which showed positive results with no observed toxicity in the AMES test. Furthermore, the molecular dynamics study confirmed the favorable binding of Diazoprogesterone, 2,4,4,7a-Tetramethyl-1-(3-oxobutyl)octahydro-1H-indene-2-carboxylic acid and 2-Naphthalenemethanol, decahydro-.alpha.,.alpha.,4a-trimethyl-8-methylene-, [2R-(2.alpha.,4a.alpha.,8a.beta.)] with the receptor throughout the 100 ns simulation period.

7.
Plants (Basel) ; 10(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34685802

ABSTRACT

To investigate the regulatory role of ethylene in the source-sink relationship for nitrogen remobilization, short-term effects of treatment with different concentrations (0, 25, 50, and 75 ppm) of ethephon (2-chloroethylphosphonic acid, an ethylene inducing agent) for 10 days (EXP 1) and long-term effects at 20 days (Day 30) after treatment with 100 ppm for 10 days (EXP 2) on protein degradation and amino acid transport in foliar sprayed mature leaves of Brassica napus (cv. Mosa) were determined. In EXP 1, endogenous ethylene concentration gradually increased in response to the treated ethephon concentration, leading to the upregulation of senescence-associated gene 12 (SAG12) expression and downregulation of chlorophyll a/b-binding protein (CAB) expression. Further, the increase in ethylene concentration caused a reduction in protein, Rubisco, and amino acid contents in the mature leaves. However, the activity of protease and expression of amino acid transporter (AAP6), an amino acid transport gene, were not significantly affected or slightly suppressed between the treatments with 50 and 75 ppm. In EXP 2, the enhanced ethylene level reduced photosynthetic pigments, leading to an inhibition of flower development without any pod development. A significant increase in protease activity, confirmed using in-gel staining of protease, was also observed in the ethephon-treated mature leaves. Ethephon application enhanced the expression of four amino acid transporter genes (AAP1, AAP2, AAP4, and AAP6) and the phloem loading of amino acids. Significant correlations between ethylene level, induced by ethephon application, and the descriptive parameters of protein degradation and amino acid transport were revealed. These results indicated that an increase in ethylene upregulated nitrogen remobilization in the mature leaves (source), which was accompanied by an increase in proteolytic activity and amino acid transport, but had no benefit to pod (sink) development.

8.
Plants (Basel) ; 10(8)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34451716

ABSTRACT

The leaf senescence process is characterized by the degradation of macromolecules in mature leaves and the remobilization of degradation products via phloem transport. The phytohormone ethylene mediates leaf senescence. This study aimed to investigate the ethephon-induced ethylene effects on starch degradation and sucrose remobilization through their interactive regulation with other hormones. Ethephon (2-chloroethylphosphonic acid) was used as an ethylene-generating agent. Endogenous hormonal status, carbohydrate compounds, starch degradation-related gene expression, sucrose transporter gene expression, and phloem sucrose loading were compared between the ethephon-treated plants and controls. Foliar ethephon spray enhanced the endogenous ethylene concentration and accelerated leaf senescence, as evidenced by reduced chlorophyll content and enhanced expression of the senescence-related gene SAG12. Ethephon-enhanced ethylene prominently enhanced the endogenous abscisic acid (ABA) level. accompanied with upregulation of ABA synthesis gene 9-cis-epoxycarotenoid dioxygenase (NCED3), ABA receptor gene pyrabactin resistance 1 (PYR1), and ABA signaling genes sucrose non-fermenting 1 (Snf1)-related protein kinase 2 (SnRK2), ABA-responsive element binding 2 (AREB2), and basic-helix-loop-helix (bHLH) transcription factor (MYC2).) Ethephon treatment decreased starch content by enhancing expression of the starch degradation-related genes α-amylase 3 (AMY3) and ß-amylase 1 (BAM1), resulting in an increase in sucrose content in phloem exudates with enhanced expression of sucrose transporters, SUT1, SUT4, and SWEET11. These results suggest that a synergistic interaction between ethylene and ABA might account for sucrose accumulation, mainly due to starch degradation in mature leaves and sucrose phloem loading in the ethephon-induced senescent leaves.

9.
Front Plant Sci ; 7: 459, 2016.
Article in English | MEDLINE | ID: mdl-27092167

ABSTRACT

To investigate the varietal difference in sulfur use efficiency (SUE) and drought stress tolerance, Brassica napus 'Mosa' and 'Saturnin' were exposed to polyethylene glycol (PEG)-induced drought stress for 72 h. Direct quantification of S uptake, de novo synthesis of amino acids and proteins was performed by tracing (34)S. The responses of photosynthetic activity in relation to SUE were also examined. The total amount of newly absorbed S decreased with drought stress in both cultivars but the decrease rate was significantly higher in Mosa (-64%) than in Saturnin (-41%). Drought stress also decreased the amount of S assimilated into amino acids ((34)S-amino acids) and proteins ((34)S-proteins). The total amount of S incorporated into amino acids and proteins was generally higher in Saturnin (663.7 µg S per plant) than in Mosa (337.3 µg S per plant). The estimation of SUE based on S uptake (SUpE) and S assimilation (SUaE) showed that SUE was much higher in Saturnin than in Mosa. The inhibition of photosynthetic activity including Rubisco protein degradation caused by drought stress was much lower in the cultivar with higher SUE (Saturnin). The present study clearly indicates that the genotype with higher SUE is more tolerant to PEG-induced drought stress.

10.
Plant Physiol Biochem ; 87: 1-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25528220

ABSTRACT

To investigate the regulatory interactions between S assimilation and N metabolism in Brassica napus, de novo synthesis of amino acids and proteins was quantified by (15)N and (34)S tracing, and the responses of transporter genes, assimilatory enzymes and metabolites pool involving in nitrate and sulfate metabolism were assessed under continuous sulfur supply, sulfur deprivation and sulfate resupply after 3 days of sulfur (S) deprivation. S-deprived plants were characterized by a strong induction of sulfate transporter genes, ATP sulfurylase (ATPS) and adenosine 5'-phosphosulfate reductase (APR), and by a repressed activity of nitrate reductase (NR) and glutamine synthetase (GS). Sulfate resupply to the S-deprived plants strongly increased cysteine, amino acids and proteins concentration. The increase in sulfate and cysteine concentration caused by sulfate resupply was not matched with the expression of sulfate transporters and the activity of ATPS and APR which were rapidly decreased by sulfate resupply. A strong induction of O-acetylserine(thiol)lyase (OASTL), NR and GS upon sulfate resupply was accompanied with the increase in cysteine, amino acids and proteins pool. Sulfate resupply resulted in a strong increase in de novo synthesis of amino acids and proteins, as evidenced by the increases in N and S incorporation into amino acids (1.8- and 2.4-fold increase) and proteins (2.2-and 6.3-fold increase) when compared to S-deprived plants. The results thus indicate that sulfate resupply followed by S-deprivation accelerates nitrate assimilation for protein synthesis.


Subject(s)
Brassica napus/metabolism , Nitrogen/metabolism , Plant Proteins/biosynthesis , Protein Biosynthesis/drug effects , Sulfates/pharmacology , Sulfur/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...