Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38711225

ABSTRACT

Children with developmental and epileptic encephalopathies often present with co-occurring dyskinesias. Pathogenic variants in ARX cause a pleomorphic syndrome that includes infantile epilepsy with a variety of movement disorders ranging from focal hand dystonia to generalized dystonia with frequent status dystonicus. In this report, we present three patients with severe movement disorders as part of ARX-associated epilepsy-dyskinesia syndrome, including a patient with a novel pathogenic missense variant (p.R371G). These cases illustrate diagnostic and management challenges of ARX-related disorder and shed light on broader challenges concerning epilepsy-dyskinesia syndromes.

2.
Mov Disord ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619077

ABSTRACT

Status dystonicus is the most severe form of dystonia with life-threatening complications if not treated promptly. We present consensus recommendations for the initial management of acutely worsening dystonia (including pre-status dystonicus and status dystonicus), as well as refractory status dystonicus in children. This guideline provides a stepwise approach to assessment, triage, interdisciplinary treatment, and monitoring of status dystonicus. The clinical pathways aim to: (1) facilitate timely recognition/triage of worsening dystonia, (2) standardize supportive and dystonia-directed therapies, (3) provide structure for interdisciplinary cooperation, (4) integrate advances in genomics and neuromodulation, (5) enable multicenter quality improvement and research, and (6) improve outcomes. © 2024 International Parkinson and Movement Disorder Society.

3.
Sensors (Basel) ; 23(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37571629

ABSTRACT

Hyperspectral data analysis is being utilized as an effective and compelling tool for image processing, providing unprecedented levels of information and insights for various applications. In this manuscript, we have compiled and presented a comprehensive overview of recent advances in hyperspectral data analysis that can provide assistance for the development of customized techniques for hyperspectral document images. We review the fundamental concepts of hyperspectral imaging, discuss various techniques for data acquisition, and examine state-of-the-art approaches to the preprocessing, feature extraction, and classification of hyperspectral data by taking into consideration the complexities of document images. We also explore the possibility of utilizing hyperspectral imaging for addressing critical challenges in document analysis, including document forgery, ink age estimation, and text extraction from degraded or damaged documents. Finally, we discuss the current limitations of hyperspectral imaging and identify future research directions in this rapidly evolving field. Our review provides a valuable resource for researchers and practitioners working on document image processing and highlights the potential of hyperspectral imaging for addressing complex challenges in this domain.

5.
Life Sci ; 264: 118621, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33164832

ABSTRACT

AIMS: Protein tyrosine phosphatase (PTP-CPS4B) is a signaling enzyme that is essential for a wide range of cellular processes, like metabolism, proliferation, survival and motility. Studies suggest that PTPs are vital for the production of Wzy-dependent capsule in bacteria, making it a valuable target for the discovery of pneumonia associated anti-virulence antibacterial agents. Present study aims at identifying the potential drug candidates to be exploited in inhibiting the growth of Streptococcus pneumonia targeting PTP-CPS4B. MATERIALS AND METHODS: The present study exploits the molecular docking potential coupled with molecular dynamic simulation as well as free energy calculations to identify potential inhibitors of PTP-CPS4B. Libraries of known and unknown compounds were docked into the active site of PTP-CPS4B using MOE. The compounds with best binding affinity and orientation were subjected to MD simulations and free energy calculations. FINDINGS: Top three compounds based on their binding energy and well composed interaction pattern obtained from molecular docking study were subjected to MD simulations and were compared to reported antibiotic drugs. MD Simulation studies have shown that the presence of an inhibitor inside the active site reduces protein flexibility as evident from RMSD, RMSF and Principal component analyses. MD simulations identified a transition from extended to bended motional shift in loop α6 of the PTP-CPS4B in ligand bound state. This flexibility was reported in the RMSF analysis and verified by the visual investigation of the loop α6 at different time intervals during the simulation. Free energy of binding affinity (computed using MMPBSA &MMGBSA approach) and the interaction patterns obtained from MD trajectory indicate that compound ZN1 (-31.50 Kcal/mol), ZN2 (-33.14 Kcal/mol) and ZN3 (-26.60 Kcal/mol) are potential drug candidates against PTP-CPS4B. Residue wise decomposition study helped in identifying the role of individual amino acid towards the overall inhibition behavior of the compounds. PCA analysis has led to the conclusion that the behavior of PTP-CPS4B inhibitors causes conformational dynamics that can be used to describe the protein inhibition mechanism. SIGNIFICANCE: The outcome reveals that this study provide enough evidences for the consideration of ZN1, ZN2, ZN3 as potential PTP-CPS4B inhibitors and further in vitro and in vivo studies may prove their therapeutic potential.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Proteins/chemistry , Protein Tyrosine Phosphatases/chemistry , Streptococcus pneumoniae/drug effects , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Catalytic Domain , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hydrogen Bonding , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Tyrosine Phosphatases/antagonists & inhibitors , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...