Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 30(10): 27041-27055, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36374381

ABSTRACT

Psychiatric drugs released by humans in wastewater have received more attention because of their potential risks for aquatic organisms. In this study, the occurrence of the two most common groups of psychiatric drugs (sedatives-hypnotics-anxiolytics and antidepressants) were evaluated in the Tehran South Municipal Wastewater Treatment Plant. All the target sedatives-hypnotics-anxiolytics (alprazolam, phenobarbital, and thioridazine) and antidepressants (fluoxetine, citalopram, sertraline, and venlafaxine) were observed in influent and secondary clarification (SC) effluent. Thioridazine (164.25 ± 218.74 ng/L) and citalopram (672.53 ± 938.56 ng/L) had the highest mean concentrations in the influent, while alprazolam (5.09 ± 2.33 ng/L) and citalopram (776.97 ± 1088.01 ng/L) had the highest concentrations in the SC effluent. The higher concentrations of the psychiatric drugs, except thioridazine, were detected in the SC effluent compared to the concentrations in the influent. The increased drugs concentrations, with negative removal efficiencies, were more distinctive in the cold season samples. Psychiatric drugs processed in the chlorination unit followed a completely different pattern compared to the drugs in the biological treatment unit. All the drugs' concentrations, except thioridazine, decreased in the chlorination unit, ranging between 27 ± 14% for alprazolam and 75 ± 10% for citalopram. However, the mean concentrations of the detected drugs were as follows: sertraline (11.96 ± 11.62 ng/L) and venlafaxine (184.94 ± 219.74 ng/L) which could cause environmental and ecological concerns.


Subject(s)
Anti-Anxiety Agents , Water Pollutants, Chemical , Water Purification , Humans , Water Pollutants, Chemical/analysis , Citalopram , Sertraline , Venlafaxine Hydrochloride , Thioridazine , Alprazolam , Iran , Antidepressive Agents/analysis , Pharmaceutical Preparations , Hypnotics and Sedatives , Environmental Monitoring , Waste Disposal, Fluid
2.
MethodsX ; 9: 101770, 2022.
Article in English | MEDLINE | ID: mdl-35818447

ABSTRACT

Many researchers are interested in utilizing renewable and sustainable energy made by exoelectrogenic bacteria during electrodialysis for the separation of minerals and organic matters from aqueous environments. The aim of this study was to develop a novel thermophilic fermenter and dual anion exchange membrane bioelectrochemical system for separating biohydrogen production inhibitors from the thermophilic fermenter and thereby increasing biological and cathodic hydrogen production by food waste and wastewater.•Using this innovative system the biohydrogen production inhibitors were separated and nutrients (for example ammonium), alkalinity, buffering capacity and pH were preserved in the bioreactor at the same time, led to higher biological and cathodic hydrogen production.

3.
Water Environ Res ; 94(7): e10754, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35765757

ABSTRACT

In this study, the potential of using peroxide regenerated iron-sulfide control (PRI-SC®) for chemical phosphorus removal utilizing the existing iron sulfide found in wastewaters was investigated in batch tests and compared in full-scale facility-wide simulations to using iron salts. PRI-SC is a combination treatment that utilizes iron salts and hydrogen peroxide in a synergetic fashion, where hydrogen peroxide is used in regenerating the spent iron salt in situ in the form of iron sulfide, yielding ferric iron and colloidal sulfur. A simplified kinetic model was developed, calibrated, and integrated into a facility-wide model to simulate the process at the full-scale. Experimental results showed that dosing hydrogen peroxide, even at doses lower than the stoichiometrically required to oxidize iron sulfide, freed, and oxidized sulfide bound ferrous iron to ferric iron, which was consequently hydrolyzed and affected phosphorus removal. Higher dosing of hydrogen peroxide did not affect change in the speciation of sulfur remaining predominantly as elemental sulfur. Simulations showed that the application of PRI-SC with supplemental ferric iron dosing was able to cut the costs of chemicals addition up to 53% while maintaining a steady-state effluent phosphate concentration below 0.01 mg/L. PRACTITIONER POINTS: The kinetic model was used to optimize ferric iron and hydrogen peroxide dosing. The developed model can be integrated in existing wastewater process simulators. Dosing hydrogen peroxide effectively oxidized ferrous iron to ferric iron. The combination of hydrogen peroxide and iron salts can reduce the chemical addition cost by 53%.


Subject(s)
Peroxides , Phosphorus , Ferrous Compounds , Hydrogen Peroxide , Iron , Salts , Sulfides , Sulfur , Technology , Wastewater
4.
Environ Sci Pollut Res Int ; 28(42): 59745-59770, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34146330

ABSTRACT

This research aimed to identify high-risk pharmaceutically active compounds (PhACs) by analyzing occurrence (O), persistence (P), bioaccumulation (B), and toxicity (T) of 62 drugs which are widely used in Iran. A comprehensive approach was taken in risk assessment of the selected PhACs and in their prioritization using multiple-criteria decision analysis (MCDA) such as utility functions and principal component analysis (PCA). In practice, assigning weight to each criterion (i.e., O, P, B, and T) for risk assessment of PhACs is a challenge. In this research, the impact of giving both equal and unequal weight to each criterion by using a quantitative entropy method was studied. For risk assessment, two exposure approaches (consumption rate and occurrence of PhACs) and three MCDA approaches (PCA and utility functions with and without equal weights for each criterion) were compared. The utility function using equal weights for all O, P, B, and T criteria showed that thioridazine, pimozide, chlorpromazine, sertraline, clomipramine, and aripiprazole were at the highest level of risk, with concern score of 0.75, 0.75, 0.67, 0.58, 0.58, and 0.58, respectively. Unequal weight approach included additional compounds such as fluoxetine, citalopram, and methadone as a priority. All three MCDA approaches showed that sedatives and antidepressants were prevalent PhACs in the risk-based priority lists. However, the exposure-based approaches showed antibiotics and analgesics as the pharmaceutical of the highest priority. Overall, selection of the high priority concern pharmaceuticals depends on the prioritization approach employed. However, the utility function using unequal weights is a more conservative and effective approach for prioritization.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Entropy , Environmental Monitoring , Risk Assessment , Water Pollutants, Chemical/analysis
5.
Water Environ Res ; 90(1): 5-12, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29268836

ABSTRACT

The hydrolysis of mixed primary and secondary sludges in two-stage anaerobic digestion was evaluated and compared with conventional single-stage digestion, using various temperature-phased configurations of M1-M2, M1-T3, T1-T2, and T1-M3. A dual hydrolysis model best described the hydrolysis in all tests. This model was also able to consistently estimate the readily and slowly fractions of particulate chemical oxygen demand (COD) of raw sludge used in the tests. The hydrolysis kinetic coefficients (Khyd_s and Khyd_r) estimated for the mesophilic digesters were significantly greater in the short hydraulic retention time (HRT) M1 digester than those of the extended HRT digesters. Conversely, at thermophilic temperatures only Khyd_r was greater in short HRT T1 digester when compared to the extended HRT digesters. The increased Khyd_r and reduced Khyd_s values due to staging effect were explained with surface reaction models and endogenous decay. The temperature dependency of Khyd_s and Khyd_r was also explored in the staged digesters.


Subject(s)
Bioreactors , Sewage/chemistry , Waste Disposal, Fluid , Wastewater/chemistry , Anaerobiosis , Hydrolysis , Kinetics , Water Pollutants, Chemical
6.
Sci Rep ; 7(1): 17664, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29247239

ABSTRACT

In this work, performance and microbial structure of a digestion (food waste-only) and a co-digestion process (mixture of cow manure and food waste) were studied at mesophilic (37 °C) and thermophilic (55 °C) temperatures. The highest methane yield (480 mL/g VS) was observed in the mesophilic digester (MDi) fed with food waste alone. The mesophilic co-digestion of food waste and manure (McoDi) yielded 26% more methane than the sum of individual digestions of manure and food waste. The main volatile fatty acid (VFA) in the mesophilic systems was acetate, averaging 93 and 172 mg/L for McoDi and MDi, respectively. Acetate (2150 mg/L) and propionate (833 mg/L) were the main VFAs in the thermophilic digester (TDi), while propionate (163 mg/L) was the major VFA in the thermophilic co-digester (TcoDi). The dominant bacteria in MDi was Chloroflexi (54%), while Firmicutes was dominant in McoDi (60%). For the mesophilic reactors, the dominant archaea was Methanosaeta in MDi, while Methanobacterium and Methanosaeta had similar abundance in McoDi. In the thermophilic systems, the dominant bacteria were Thermotogae, Firmicutes and Synergistetes in both digesters, however, the relative abundance of these phyla were different. For archaea, the genus Methanothermobacter were entirely dominant in both TDi and TcoDi.


Subject(s)
Chloroflexi/physiology , Firmicutes/physiology , Gram-Negative Anaerobic Straight, Curved, and Helical Rods/physiology , Medical Waste Disposal , Methanobacteriaceae/physiology , RNA, Ribosomal, 16S/analysis , Waste Management , Animals , Cattle , Fatty Acids/chemistry , Fatty Acids/metabolism , Food , Food Microbiology , Hot Temperature , Manure , Methane/chemistry , Methane/metabolism
7.
Biotechnol Biofuels ; 10: 302, 2017.
Article in English | MEDLINE | ID: mdl-29255485

ABSTRACT

BACKGROUND: Food waste is a large bio-resource that may be converted to biogas that can be used for heat and power production, or as transport fuel. We studied the anaerobic digestion of food waste in a staged digestion system consisting of separate acidogenic and methanogenic reactor vessels. Two anaerobic digestion parameters were investigated. First, we tested the effect of 55 vs. 65 °C acidogenic reactor temperature, and second, we examined the effect of reducing the hydraulic retention time (HRT) from 17 to 10 days in the methanogenic reactor. Process parameters including biogas production were monitored, and the microbial community composition was characterized by 16S amplicon sequencing. RESULTS: Neither organic matter removal nor methane production were significantly different for the 55 and 65 °C systems, despite the higher acetate and butyrate concentrations observed in the 65 °C acidogenic reactor. Ammonium levels in the methanogenic reactors were about 950 mg/L NH4+ when HRT was 17 days but were reduced to 550 mg/L NH4+ at 10 days HRT. Methane production increased from ~ 3600 mL/day to ~ 7800 when the HRT was decreased. Each reactor had unique environmental parameters and a correspondingly unique microbial community. In fact, the distinct values in each reactor for just two parameters, pH and ammonium concentration, recapitulate the separation seen in microbial community composition. The thermophilic and mesophilic digesters were particularly distinct from one another. The 55 °C acidogenic reactor was mainly dominated by Thermoanaerobacterium and Ruminococcus, whereas the 65 °C acidogenic reactor was initially dominated by Thermoanaerobacterium but later was overtaken by Coprothermobacter. The acidogenic reactors were lower in diversity (34-101 observed OTU0.97, 1.3-2.5 Shannon) compared to the methanogenic reactors (472-513 observed OTU0.97, 5.1-5.6 Shannon). The microbial communities in the acidogenic reactors were > 90% Firmicutes, and the Euryarchaeota were higher in relative abundance in the methanogenic reactors. CONCLUSIONS: The digestion systems had similar biogas production and COD removal rates, and hence differences in temperature, NH4+ concentration, and pH in the reactors resulted in distinct but similarly functioning microbial communities over this range of operating parameters. Consequently, one could reduce operational costs by lowering both the hydrolysis temperature from 65 to 55 °C and the HRT from 17 to 10 days.

8.
Appl Environ Microbiol ; 83(2)2017 01 15.
Article in English | MEDLINE | ID: mdl-27815274

ABSTRACT

In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor with food waste as the dominant feedstock, operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg/liter NH3-N). The microbial community was strongly dominated (76% of all 16S rRNA amplicon sequences) by populations closely related to the proteolytic bacterium Coprothermobacter proteolyticus. Multiple Coprothermobacter-affiliated strains were detected, introducing an additional level of complexity seldom explored in biogas studies. Genome reconstructions provided metabolic insight into the microbes that performed biomass deconstruction and fermentation, including the deeply branching phyla Dictyoglomi and Planctomycetes and the candidate phylum "Atribacteria" These biomass degraders were complemented by a synergistic network of microorganisms that convert key fermentation intermediates (fatty acids) via syntrophic interactions with hydrogenotrophic methanogens to ultimately produce methane. Interpretation of the proteomics data also suggested activity of a Methanosaeta phylotype acclimatized to high ammonia levels. In particular, we report multiple novel phylotypes proposed as syntrophic acetate oxidizers, which also exert expression of enzymes needed for both the Wood-Ljungdahl pathway and ß-oxidation of fatty acids to acetyl coenzyme A. Such an arrangement differs from known syntrophic oxidizing bacteria and presents an interesting hypothesis for future studies. Collectively, these findings provide increased insight into active metabolic roles of uncultured phylotypes and presents new synergistic relationships, both of which may contribute to the stability of the biogas reactor. IMPORTANCE: Biogas production through anaerobic digestion of organic waste provides an attractive source of renewable energy and a sustainable waste management strategy. A comprehensive understanding of the microbial community that drives anaerobic digesters is essential to ensure stable and efficient energy production. Here, we characterize the intricate microbial networks and metabolic pathways in a thermophilic biogas reactor. We discuss the impact of frequently encountered microbial populations as well as the metabolism of newly discovered novel phylotypes that seem to play distinct roles within key microbial stages of anaerobic digestion in this stable high-temperature system. In particular, we draft a metabolic scenario whereby multiple uncultured syntrophic acetate-oxidizing bacteria are capable of syntrophically oxidizing acetate as well as longer-chain fatty acids (via the ß-oxidation and Wood-Ljundahl pathways) to hydrogen and carbon dioxide, which methanogens subsequently convert to methane.


Subject(s)
Bacteria/metabolism , Bioreactors/microbiology , Microbial Consortia , Anaerobiosis , Bacteria/classification , Bacteria/genetics , Biofuels , Firmicutes/classification , Firmicutes/genetics , Firmicutes/metabolism , Garbage , Metabolic Networks and Pathways , Proteomics , Sequence Analysis, DNA
9.
PLoS One ; 11(5): e0155213, 2016.
Article in English | MEDLINE | ID: mdl-27159387

ABSTRACT

Reindeer (Rangifer tarandus tarandus) are large Holarctic herbivores whose heterogeneous diet has led to the development of a unique gastrointestinal microbiota, essential for the digestion of arctic flora, which may include a large proportion of lichens during winter. Lichens are rich in plant secondary metabolites, which may affect members of the gut microbial consortium, such as the methane-producing methanogenic archaea. Little is known about the effect of lichen consumption on the rumen and cecum microbiotas and how this may affect methanogenesis in reindeer. Here, we examined the effects of dietary lichens on the reindeer gut microbiota, especially methanogens. Samples from the rumen and cecum were collected from two groups of reindeer, fed either lichens (Ld: n = 4), or a standard pelleted feed (Pd: n = 3). Microbial densities (methanogens, bacteria and protozoa) were quantified using quantitative real-time PCR and methanogen and bacterial diversities were determined by 454 pyrosequencing of the 16S rRNA genes. In general, the density of methanogens were not significantly affected (p>0.05) by the intake of lichens. Methanobrevibacter constituted the main archaeal genus (>95% of reads), with Mbr. thaueri CW as the dominant species in both groups of reindeer. Bacteria belonging to the uncharacterized Ruminococcaceae and the genus Prevotella were the dominant phylotypes in the rumen and cecum, in both diets (ranging between 16-38% total sequences). Bacteria belonging to the genus Ruminococcus (3.5% to 0.6%; p = 0.001) and uncharacterized phylotypes within the order Bacteroidales (8.4% to 1.3%; p = 0.027), were significantly decreased in the rumen of lichen-fed reindeer, but not in the cecum (p = 0.2 and p = 0.087, respectively). UniFrac-based analyses showed archaeal and bacterial libraries were significantly different between diets, in both the cecum and the rumen (vegan::Adonis: pseudo-F<0.05). Based upon previous literature, we suggest that the altered methanogen and bacterial profiles may account for expected lower methane emissions from lichen-fed reindeer.


Subject(s)
Cecum/microbiology , Diet , Lichens , Methane/metabolism , Microbiota , Reindeer/physiology , Rumen/microbiology , Animals , Archaea/genetics , Bacteria/classification , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Real-Time Polymerase Chain Reaction , Reindeer/microbiology
10.
Water Res ; 96: 246-54, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27060528

ABSTRACT

Recirculation of digestate was investigated as a strategy to dilute the food waste before feeding to anaerobic digesters, and its effects on microbial community structure and performance were studied. Two anaerobic digesters with digestate recirculation were operated at 37 °C (MD + R) and 55 °C (TD + R) and compared to two additional digesters without digestate recirculation operated at the same temperatures (MD and TD). The MD + R digester demonstrated quite stable and similar performance to the MD digester in terms of the methane yield (around 480 mL CH4 per gVSadded). In both MD and MD + R Methanosaeta was the dominant archaea. However, the bacterial community structure was significantly different in the two digesters. Firmicutes dominated in the MD + R, while Chloroflexi was the dominant phylum in the MD. Regarding the thermophilic digesters, the TD + R showed the lowest methane yield (401 mL CH4 per gVSadded) and accumulation of VFAs. In contrast to the mesophilic digesters, the microbial communities in the thermophilic digesters were rather similar, consisting mainly of the phyla Firmicutes, Thermotoga, Synergistetes and the hydrogenotrophic methanogen Methanothermobacter. The impact of ammonia inhibition was different depending on the digesters configurations and operating temperatures.


Subject(s)
Bioreactors/microbiology , Temperature , Anaerobiosis , Archaea , Methane
11.
J Water Health ; 13(3): 859-69, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26322772

ABSTRACT

Trihalomethanes (THMs) were the first disinfection by-products discovered in drinking water and are classified as probable carcinogens. This study measures and models THMs formation at two drinking water distribution systems (WDS1 and WDS2) in Ahvaz City, Iran. The investigation was based on field-scale investigations and an intensive 36-week sampling program, from January to September 2011. The results showed total THM concentrations in the range 17.4-174.8 µg/L and 18.9-99.5 µg/L in WDS1 and WDS2, respectively. Except in a few cases, the THM concentrations in WDS1 and WDS2 were lower than the maximum contaminant level values. Using two-tailed Pearson correlation test, the water temperature, dissolved organic carbon, UV254, bromide ion (Br-), free residual chlorine, and chlorine dose were identified as the significant parameters for THMs formation in WDS2. Water temperature was the only significant parameter for THMs formation in WDS1. Based on the correlation results, a predictive model for THMs formation was developed using a multiple regression approach. A multiple linear regression model showed the best fit according to the coefficients of determination (R2) obtained for WDS1 (R2=0.47) and WDS2 (R2=0.54). Further correlation studies and analysis focusing on THMs formation are necessary to assess THMs concentration using the predictive models.


Subject(s)
Models, Chemical , Trihalomethanes/analysis , Water Pollutants, Chemical/analysis , Water Supply/analysis , Iran , Seasons , Trihalomethanes/chemistry , Water Pollutants, Chemical/chemistry
12.
Bioresour Technol ; 149: 318-26, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24125797

ABSTRACT

The influence of differing operational conditions of two-stage digesters on biokinetic characteristics and communities of methanogenic archaea was evaluated. Operating temperature of each phase influenced the archaeal communities significantly. Also, a strong correlation was observed between community composition and temperature and pH. The maximum specific substrate utilization rates (k max) of acetoclastic methanogens in the mesophilic and thermophilic 1st phases were 11.4 and 22.0 mgCOD mgCOD(-1)d(-1), respectively, whereas significantly lower k max values were estimated for the mesophilic and thermophilic 2nd-phase digesters which were 7.6 and 16.6 mgCOD mgCOD(-1)d(-1), respectively. It appeared that the biokinetic characteristics of the acetoclastic methanogen communities were reliant on digester loading rates. Also, higher temperature dependency coefficients (θ) were observed for the long retention time digesters when compared to the values computed for the 1st-phase digesters. Accordingly, the implementation of two sets of biokinetic parameters for acetoclastic methanogen will improve modeling of phased anaerobic digesters.


Subject(s)
Archaea/genetics , Archaea/metabolism , Methane/metabolism , Refuse Disposal/methods , Acetates/metabolism , Anaerobiosis , Biodegradation, Environmental , Biomass , Bioreactors , Denaturing Gradient Gel Electrophoresis , Kinetics , Molecular Sequence Data , Refuse Disposal/instrumentation , Temperature
13.
Water Res ; 47(4): 1558-69, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23332790

ABSTRACT

Phased anaerobic digestion is a promising technology and may be a potential source of bio-energy production. Anaerobic digesters are widely used for sewage sludge stabilization and thus a better understanding of the microbial process and kinetics may allow increased volatile solids reduction and methane production through robust process operation. In this study, we analyzed the impact of phase separation and operational conditions on the bio-kinetic characteristics and communities of bacteria associated with four phased anaerobic digestion systems. In addition to significant differences between bacterial communities associated with different digester operating temperatures, our results also revealed that bacterial communities in the phased anaerobic digestion systems differed between the 1st and 2nd phase digesters and we identified strong community composition correlations with several measured physicochemical parameters. The maximum specific growth rates of propionate oxidizing bacteria (POB) in the mesophilic and thermophilic 1st phases were 11 and 23.7 mgCOD mgCOD(-1) d(-1), respectively, while those of the mesophilic and thermophilic 2nd-phase digesters were 6.7 and 18.6 mgCOD mgCOD(-1) d(-1), respectively. Hence, the biokinetic characteristics of the POB population were dependent on the digester loading. In addition, we observed that the temperature dependency factor (θ) values were higher for the less heavily loaded digesters as compared to the values obtained for the 1st-phase digesters. Our results suggested the appropriate application of two sets of POB bio-kinetic that reflect the differing growth responses as a function of propionate concentration (and/or organic loading rates). Also, modeling acetogenesis in phased anaerobic sludge digestion systems will be improved considering a population shift in separate phases. On the basis of the bio-kinetic values estimated in various digesters, high levels of propionate in the thermophilic digesters may be best explained by the establishment of POB with low affinities (high K(s)) for propionate. Achieving low levels of propionate with either thermophilic or short HRT digesters is challenging and a relatively long HRT mesophilic digester should be employed for this purpose.


Subject(s)
Bacteria/metabolism , Propionates/metabolism , Sewage/microbiology , Waste Disposal, Fluid/instrumentation , Anaerobiosis , Bacteria/classification , Bacteria/genetics , Biological Oxygen Demand Analysis , Bioreactors/microbiology , Denaturing Gradient Gel Electrophoresis , Kinetics , Temperature , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...