Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Environ Microbiol Rep ; 16(3): e13271, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692852

ABSTRACT

Tuber magnatum is the most expensive truffle, but its large-scale cultivation is still a challenge compared to other valuable Tuber species. T. magnatum mycelium has never been grown profitably until now, which has led to difficulties to studying it in vitro. This study describes beneficial interactions between T. magnatum mycelium and never before described bradyrhizobia, which allows the in vitro growth of T. magnatum mycelium. Three T. magnatum strains were co-isolated on modified Woody Plant Medium (mWPM) with aerobic bacteria and characterised through microscopic observations. The difficulties of growing alone both partners, bacteria and T. magnatum mycelium, on mWPM demonstrated the reciprocal dependency. Three bacterial isolates for each T. magnatum strain were obtained and molecularly characterised by sequencing the 16S rRNA, glnII, recA and nifH genes. Phylogenetic analyses showed that all nine bacterial strains were distributed among five subclades included in a new monophyletic lineage belonging to the Bradyrhizobium genus within the Bradyrhizobium jicamae supergroup. The nifH genes were detected in all bacterial isolates, suggesting nitrogen-fixing capacities. This is the first report of consistent T. magnatum mycelium growth in vitro conditions. It has important implications for the development of new technologies in white truffle cultivation and for further studies on T. magnatum biology and genetics.


Subject(s)
Bradyrhizobium , Mycelium , Phylogeny , RNA, Ribosomal, 16S , Bradyrhizobium/genetics , Bradyrhizobium/classification , Bradyrhizobium/isolation & purification , Bradyrhizobium/physiology , Bradyrhizobium/growth & development , Bradyrhizobium/metabolism , Mycelium/growth & development , RNA, Ribosomal, 16S/genetics , Nitrogen Fixation , DNA, Bacterial/genetics , Symbiosis
2.
Int J Med Mushrooms ; 26(2): 43-55, 2024.
Article in English | MEDLINE | ID: mdl-38421695

ABSTRACT

Three genetically identified and morphologically characterized strains (MesAQ2-C, MesAQ6-2 and MesFI2-3) of the culinary-medicinal ascomycete mushroom Morchella esculenta (L.) Pers. collected in central-north Italy have been studied for their antifungal and antibacterial activities. The obtained data showed that mycelium of M. esculenta possess variable antimicrobial activity against four test fungi (Chrysosporium keratinophilum, Microsporum gypseum, Trichophyton terrestre, Penicillium griseofulvum), as well as one Gram positive (Staphylococcus aureus) and three Gram negative (Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa) test bacteria potentially pathogenic for humans and animals. Up to 20.4% of inhibition of the average mycelial growth rate (GRavr) of test fungi in dual culture experiment was detected. The samples of cultural liquid (CL) and mycelial extract (ME) obtained by static cultivation of M. esculenta strains showed up to 13.9 and 23.0% of GRavr inhibition of test fungi, respectively. Similarly, the inhibition of the bacterial colonies by CL and ME samples was 34.1 and 32.3%, respectively in comparison with the control with streptomycin indicating almost equal secretion of both intra- and extracellular antimicrobial compounds by M. esculenta mycelium. As a producer of antimicrobial compounds among tested M. esculenta strains, MesAQ2-C was the most effective. It may be considered for further myco-pharmacological research to develop mushroom-based antimicrobial biotech products with biomedical significance.


Subject(s)
Agaricales , Ascomycota , Animals , Humans , Antifungal Agents , Escherichia coli , Italy
3.
Plants (Basel) ; 13(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38256777

ABSTRACT

Tuber melanosporum is an ascomycete that forms ectomycorrhizal (ECM) symbioses with a wide range of host plants, producing edible fruiting bodies with high economic value. The quality of seedlings in the early symbiotic stage is important for successful truffle cultivation. Numerous bacterial species have been reported to take part in the truffle biological cycle and influence the establishment of roots symbiosis in plant hosts and the development of the carpophore. In this work, three different bacteria formulations were co-inoculated in Quercus ilex L. seedlings two months after T. melanosporum inoculation. At four months of bacterial application, the T. melanosporum ECM root tip rate of colonization and bacterial presence were assessed using both morphological and molecular techniques. A 2.5-fold increase in ECM colonization rate was found in the presence of Pseudomonas sp. compared to the seedlings inoculated only with T. melanosporum. The same treatment caused reduced plant growth either for the aerial and root part. Meanwhile, the ECM colonization combined with Bradyrhizobium sp. and Pseudomonas sp. + Bradyrhizobium sp. reduced the relative density of fibrous roots (nutrient absorption). Our work suggests that the role of bacteria in the early symbiotic stages of ECM colonization involves both the mycorrhizal symbiosis rate and plant root development processes, both essential for improve the quality of truffle-inoculated seedlings produced in commercial nurseries.

4.
Int J Mol Sci ; 24(13)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37446159

ABSTRACT

Truffles are ascomycete hypogeous fungi belonging to the Tuberaceae family of the Pezizales order that grow in ectomycorrhizal symbiosis with tree roots, and they are known for their peculiar aromas and flavors. The axenic culture of truffle mycelium is problematic because it is not possible in many cases, and the growth rate is meager when it is possible. This limitation has prompted searching and characterizing new strains that can be handled in laboratory conditions for basic and applied studies. In this work, a new strain of Tuber borchii (strain SP1) was isolated and cultured, and its transcriptome was analyzed under different in vitro culture conditions. The results showed that the highest growth of T. borchii SP1 was obtained using maltose-enriched cultures made with soft-agar and in static submerged cultures made at 22 °C. We analyzed the transcriptome of this strain cultured in different media to establish a framework for future comparative studies, paying particular attention to the central metabolic pathways, principal secondary metabolite gene clusters, and the genes involved in producing volatile aromatic compounds (VOCs). The results showed a transcription signal for around 80% of the annotated genes. In contrast, most of the transcription effort was concentrated on a limited number of genes (20% of genes account for 80% of the transcription), and the transcription profile of the central metabolism genes was similar in the different conditions analyzed. The gene expression profile suggests that T. borchii uses fermentative rather than respiratory metabolism in these cultures, even in aerobic conditions. Finally, there was a reduced expression of genes belonging to secondary metabolite clusters, whereas there was a significative transcription of those involved in producing volatile aromatic compounds.


Subject(s)
Ascomycota , Mycorrhizae , Transcriptome , Ascomycota/metabolism , Mycorrhizae/genetics , Symbiosis
5.
J Fungi (Basel) ; 9(6)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37367614

ABSTRACT

Tuber borchii is an edible ectomycorrhizal mushroom of considerable economic value. Its cultivation has become popular in recent years, but there are few studies on the factors affecting its productivity. In this work, the ascoma production and the ectomycorrhizal (ECM) community of a T. borchii plantation, established in an intensive farming area where this truffle is not naturally present, were studied. Tuber borchii production drastically declined from 2016 to 2021, and ascomata of other Tuber species (T. maculatum and T. rufum) were found from 2017. Molecular characterization of ectomycorrhizae carried out in 2016 identified 21 ECM fungal species, of which T. maculatum (22%) and Tomentella coerulea (19%) were the most abundant. Tuber borchii ectomycorrizae (16%) were almost entirely confined to the fruiting points. The diversity and structure of the ECM community on Pinus pinea were significantly different from those observed on hardwood trees. The obtained results suggest that T. maculatum (a native of the study site) tends to replace T. borchii through a mechanism of competitive exclusion. Although T. borchii cultivation is possible in suboptimal environments, particular care should be taken to limit competition with ECM fungi more suitable for local conditions.

6.
Sci Total Environ ; 871: 161953, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36740071

ABSTRACT

The Po plain (Italy) is one of the largest floodplains in Europe that needs environmental restoration. To achieve this goal, the knowledge of the 'environment' (water, bed sediments and vegetation) of the canals crossing such floodplain is necessary. The water flow of the canals was kept low for hydraulic safety purposes from October to March (NIR), and high for irrigation purposes from April to September (IR). Within this framework, this study aimed to assess in 9 sites of the east part of Po plain 1) the canals' environment quality in terms of vegetation diversity, and water and bed sediment physicochemical properties; and 2) how these features are influenced by canal managements and landscape properties. Water was monthly sampled both in NIR and IR periods, the bed sediments were sampled in summer and winter periods, while the vegetation was recorded in spring and autumn. The low water flow during NIR worsened the water quality by increasing the concentrations of nutrients and salts. A higher salt and nutrient concentrations were observed both in water and bed sediments of canals crossing areas with fine texture alluvial deposits than in those flowing through medium texture alluvial deposits. Further, higher nutrient and salt concentrations were observed for the canals used as collectors of the water coming from other canals. Despite the differences observed for the bed sediments and water quality, the vegetation type and biodiversity did not show differences among the study sites probably because affected by the land use of the surrounding landscape. Indeed, the canals cross agricultural land which limit the developments of natural vegetation and do not promote plant biodiversity. Overall, the present study found out the key role of landscape properties and canal managements on 'canal environment' quality which need to be considered to perform an appropriate reclamation of such environments.


Subject(s)
Agriculture , Environmental Restoration and Remediation , Biodiversity , Italy , Water Quality , Geologic Sediments , Rivers
7.
Environ Microbiol ; 24(12): 6439-6452, 2022 12.
Article in English | MEDLINE | ID: mdl-36325818

ABSTRACT

Tuber borchii is a European edible truffle which forms ectomycorrhizas with several soft- and hardwood plants. In this article, the effects of high level of Pb on the in vitro growth of five T. borchii strains and the molecular mechanisms involved in Pb tolerance were studied. Moreover, the effects of the Pb treatment on T. borchii ectomycorrhizas and on the growth, element uptake and distribution in different organs of Quercus cerris seedlings were investigated. The results showed an extraordinary tolerance of T. borchii mycelium to Pb: all the tested strains were able to grow at Pb concentration over 4000 mg L-1 . The mechanisms of tolerance seem related to Pb sequestration in the vacuole and its immobilization as crystal of Pb oxalate outside the hyphae rather than detoxification processes, considering the low expression of glutaredoxin and thioredoxin genes. T. borchii-Q. cerris mycorrhizas tolerate a soil concentration of Pb from 1869 to 4030 mg kg-1 although, at these Pb concentrations, T. borchii showed a reduced ability to colonize roots. T. borchii mycorrhization increased the uptake of Pb by Q. cerris. Mycorrhization and Pb treatment also significantly influenced the uptake and translocation in the plant of other elements.


Subject(s)
Mycorrhizae , Quercus , Mycorrhizae/genetics , Quercus/microbiology , Biodegradation, Environmental , Lead , Plants
8.
Fungal Biol ; 125(10): 796-805, 2021 10.
Article in English | MEDLINE | ID: mdl-34537175

ABSTRACT

Truffles in the genus Tuber produce subterranean fruiting bodies that are not able to actively discharge their spores in the environment. For this reason, truffles depend on mycophagous animals for reproduction. Fungus consumption (mycophagy) is a behaviour typical of both vertebrates and invertebrates. Mammals, especially rodents, are the most studied group of mycophagists and have been found to consume a great variety of fungi. Among invertebrates, mycophagy is documented in arthropods, but rarely in molluscs. In our study we assessed the effect on the morphology and mycorrhizal colonization of Tuber aestivum spores after passage through the gut of slugs (Deroceras invadens) and, for comparison, of a house mouse (Mus musculus). Light, scanning electron and atomic force microscopy revealed that the digestion, especially by slugs, freed spores from the asci and modified their morphology. These are believed to be the reasons why we observed an improvement in oak mycorrhization with the slug and rodent ingested spores in comparison to a fresh spore inoculation. We also demonstrated by molecular barcoding that slugs' guts sampled on a Tuber melanosporum truffle ground contain spores from this species and Tuber brumale, further suggesting that some invertebrates are efficient Tuber spore dispersers.


Subject(s)
Ascomycota , Gastropoda , Mycorrhizae , Animals , Mice , Spores, Fungal
9.
Mycorrhiza ; 31(3): 389-394, 2021 May.
Article in English | MEDLINE | ID: mdl-33835237

ABSTRACT

Tuber magnatum (the white truffle) is the most precious species of the genus Tuber which comprises the hypogeous ectomycorrhizal species called "true truffle." Despite its high economic value, the knowledge on its ecology is scant, principally due to the difficulty to find its mycorrhizas in the soil. The possibility to detect its mycelium by DNA extracted from soil has given a new chance for studying this truffle species. In this work, the co-occurrence of other Tuber species with T. magnatum mycelium was investigated by using species-specific primers in several productive areas located in central and northern Italy. Most (82%) of the examined soil samples showed at least one other Tuber species in addition to T. magnatum. The most common was T. maculatum (72% of soil samples) followed by T. borchii, T. rufum, T. brumale, T. dryophilum, T. macrosporum, and T. melanosporum (40%, 37%, 22%, 19%, 12%, and 1% of soil samples, respectively). Tuber aestivum was never detected in T. magnatum productive patches. Analysis of species co-occurrence showed that the pairwise associations between T. dryophilum-T. brumale, T. brumale-T. borchii, and T. borchii-T. dryophilum was significant. The results suggest that Tuber mycelial network in white truffle grounds is much more extensive than the distribution of their ectomycorrhizas and competitive exclusion between different Tuber species seems to take place only for root colonization.


Subject(s)
Mycorrhizae , Ascomycota , Italy , Mycelium , Soil Microbiology
10.
J Fungi (Basel) ; 7(2)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557141

ABSTRACT

In recent years, fungi have been recognized as producers of acetylcholinesterase (AChE) inhibitors, agents important for the prevention of Alzheimer's disease (AD). This study aimed to examine the AChE inhibitory, the antioxidative and antibacterial activity of two different Schizophyllum commune strains that originated from Serbia (SRB) and Italy (IT). Submerged cultivation of grown mycelia (M) and fermentation broth (F) of ethanol (EtOH) and polysaccharide (PSH) extracts lasted for 7, 14, 21 and 28 days. For AChE activity Ellman method was performed, while for antioxidative activity, sevendifferent assays were conducted: DPPH, ABTS, FRAP, SOA, OH, NO together with total phenolic content. Antimicrobial screen, LC-MS/MS technique and FTIR measurements were performed. Different isolates exhibited different AChE activity, with PSH being the strongest (SRB, M, 28 days IC90 79.73 ± 26.34 µg/mL), while in EtOH extracts, IT stood out (F, 14 days, IC50 0.8 ± 0.6 µg/mL). PSH extracts (7 days) exhibit significant antioxidative activity (AO), opposite to EtOH extracts where 14 and 21days periods stood out. Only tw extracts showed antibacterial activity. Following LC-MS/MS analysis p-hydroxybenzoic and gallic acids were the most abundant phenolics. PSH extracts demonstrated remarkable results, making this study debut and introducing S. commune as a valuable resource of AChE inhibitors.

11.
3 Biotech ; 11(1): 24, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33442522

ABSTRACT

Tuber melanosporum Vittad. (Black or Périgord truffle) is a truffle native to the Mediterranean Southern Europe, popular for its unique flavor, and has great economic importance. The present work focused on assessing the possibility of cultivating T. melanosporum associated with Quercus robur L. in the desert climate of Saudi Arabia. The plantation was initiated in November 2018 by planting 271 oak seedlings in the Al-Qassim desert area and checked for survival and ectomycorrhiza development after 1.5 years of plantation maintenance. Amongst the 271 seedlings planted, 243 plants survived two harsh seasons (2019 and 2020), and the randomly selected and tested seedlings were still mycorrhized with T. melanosporum. The mycorrhization level with T. melanosporum was between 5 and 35% of all fine roots, and the share of contaminant ectomycorrhiza was low. In comparison to other areas where T. melanosporum is successfully cultivated, the Al-Qassim desert area has 10-15 °C higher average summer temperatures and a low total annual precipitation, which necessitates regular irrigation of the plantation. This work opens the avenue for an adapted, yet sustainable cultivation of T. melanosporum-inoculated oak tree in a desert climatic condition and introduces new opportunities of the agro-forest business in Saudi Arabia and GCC region.

12.
Mycologia ; 112(5): 932-940, 2020.
Article in English | MEDLINE | ID: mdl-32730126

ABSTRACT

Truffles in the genus Tuber are hypogeus fungi that have a worldwide distribution. Despite this, knowledge about their diversity in the Middle East is very limited. In recent years, large quantities of truffles have been imported from Iran for being sold in Italy. While analyzing certain commercial batches of T. aestivum from Iran, we found some ascomata that resembled T. excavatum but had macro- and micromorphological features that were distinct from this species. They were subglobose, or depressed to slightly irregular, with a conspicuous basal cavity, grayish brown, brown, or pinkish gray, with a minutely papillose peridium. The gleba was pinkish gray in youth, brown at maturity, marbled with cream branched veins. Ascospores were broadly ellipsoid, with an irregular reticulum and distinctive long crests along the longitudinal axis, up to 9 µm high. Analysis of internal transcribed spacer (ITS) and large subunit (LSU) rDNA sequences showed that these specimens form a monphyletic and well-supported taxon within the Excavatum clade. Morphological and molecular analyses supported the proposal of the new species T. iranicum.


Subject(s)
Ascomycota/classification , Ascomycota/cytology , Ascomycota/genetics , DNA, Fungal , DNA, Ribosomal Spacer/genetics , Spores, Fungal/classification , Spores, Fungal/cytology , Genetic Variation , Genotype , Iran , Sequence Analysis, DNA , Spores, Fungal/genetics
13.
Molecules ; 25(13)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630357

ABSTRACT

The current management practice of digestate from biogas plants involves its use for land application as a fertilizer. Nevertheless, the inadequate handling of digestate may cause environmental risks due to losses of ammonia, methane and nitrous oxide. Therefore, the key goals of digestate management are to maximize its value by developing new digestate products, reducing its dependency on soil application and the consequent air pollution. The high nitrogen and lignin content in solid digestate make it a suitable substrate for edible and medicinal mushroom cultivation. To this aim, the mycelial growth rate and degradation capacity of the lignocellulosic component from corn silage digestate, undigested wheat straw and their mixture were investigated on Cyclocybe aegerita, Coprinus comatus, Morchella importuna, Pleurotus cornucopiae and Pleurotus ostreatus. The structural modification of the substrates was performed by using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Preliminary in vitro results demonstrated the ability of P. ostreatus, P. cornucopiae and M. importuna to grow and decay hemicellulose and lignin of digestate. Cultivation trials were carried out on C. aegerita, P. cornucopiae and P. ostreatus. Pleurotus ostreatus showed the highest biological efficiency and fruiting body production in the presence of the digestate; moreover, P. ostreatus and P. cornucopiae were able to degrade the lignin. These results provide attractive perspectives both for more sustainable digestate management and for the improvement of mushroom cultivation efficiency.


Subject(s)
Agaricales/growth & development , Ascomycota/growth & development , Coprinus/growth & development , Pleurotus/growth & development , Zea mays/metabolism , Agaricales/metabolism , Ascomycota/metabolism , Coprinus/metabolism , Lignin/metabolism , Pleurotus/metabolism , Polysaccharides/metabolism , Silage/analysis , Zea mays/chemistry
14.
Mycorrhiza ; 30(2-3): 211-219, 2020 May.
Article in English | MEDLINE | ID: mdl-32219547

ABSTRACT

Truffles are highly valuable ectomycorrhizal fungi that grow naturally in alkaline, calcareous soils. Iron deficiency chlorosis is a common problem in truffle (Tuber spp.) cultivation due to the high quantity of lime added to increase the pH of acidic soils. In this work, the effects of ferric hydroxide nanoparticles embedded in an exopolysaccharide (Fe-EPS NPs), extracted from cultures of Klebsiella oxytoca DSM 29614, were investigated on Quercus robur seedlings under greenhouse conditions. The plants were inoculated with Tuber borchii (the bianchetto truffle) and were cultivated with and without iron nanoparticle additions and compared with non-inoculated control plants. The seedlings were grown in limed soil in order to induce iron deficiency. Low doses of Fe-EPS NPs had a beneficial effect on the growth of the plants inoculated with T. borchii, increasing their height and reducing their leaf chlorosis 5 months after the first Fe-EPS NP treatment. Moreover, Fe-EPS NP treatments significantly increased the level of T. borchii mycorrhizal colonization and the ectomycorrhizal mantle thickness. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) applied to cross sections of mycorrhizas showed that Fe accumulated in the fungal mantle and apparently was slowly released serving as a resilient reservoir of iron for the plant. The results suggest that the application of Fe-EPS NPs is a promising technique in the production of Tuber mycorrhized plants in the nursery and could have future applications in the field.


Subject(s)
Mycorrhizae , Nanoparticles , Ferric Compounds , Hydroxides
15.
Environ Microbiol ; 22(3): 964-975, 2020 03.
Article in English | MEDLINE | ID: mdl-31393668

ABSTRACT

Tuber borchii (the Bianchetto truffle) is a heterothallic Ascomycete living in symbiotic association with trees and shrubs. Maternal and paternal genotype dynamics have already been studied for the black truffles Tuber melanosporum and Tuber aestivum but not yet for T. borchii. In this study, we analysed maternal and paternal genotypes in the first truffle orchard realized with plants inoculated with five different T. borchii mycelia. Our aims were to test the persistence of the inoculated mycelia, if maternal and/or paternal genotypes correspond to inoculated mycelia and to assess the hermaphroditism of T. borchii. The mating type of each isolate as well as those of mycorrhizas, ascomata and extraradical soil mycelia was determined. Moreover, simple sequence repeat (SSR) profiles of maternal and paternal genotypes were assessed in 18 fruiting bodies to investigate the sexual behaviour of this truffle. The maternal genotypes of the fruiting bodies corresponded to those of the inoculated mycelia with only two exceptions. This confirmed that the inoculated mycelia persisted 9 years after plantation. As regards paternal partner, only two had the same genotype as those of the inoculated mycelia, suggesting hermaphroditism. Most of the new paternal genotypes originated from a recombination of those of inoculated mycelia.


Subject(s)
Ascomycota/genetics , Genotype , Soil Microbiology , Microsatellite Repeats , Mycelium/genetics , Mycorrhizae/genetics , Plants/microbiology , Symbiosis
16.
Fungal Biol ; 122(12): 1134-1141, 2018 12.
Article in English | MEDLINE | ID: mdl-30449351

ABSTRACT

Tuber magnatum Pico, the delectable white truffle, is the most prized truffle species. In this study, we examined the reddish pigmentation that frequently occurs in T. magnatum ascomata for the presence of pigment-producing bacteria. The inner part of the reddish-pigmented region of three T. magnatum ascomata collected in North-Central Italy was analysed. This reddish part was used to establish a bacterial culture collection and to extract the total genomic DNA in order to obtain a library of 16S rRNA genes representative of the bacterial community. The molecular approach revealed limited microbial diversity within the reddish-pigmented regions compared to the wider range of bacterial species commonly found at the same maturation stage and season in T. magnatum ascomata. The pigmented regions showed a prevalence of specific bacterial species belonging to α-, ß- and γ- Proteobacteria, Actinobacteria and Firmicutes. From the tandem mass spectrometry analysis of the extracted pigment, four compounds were identified: i) bixin, ii) ß-carotene, iii) cis-1-glycosyl-apo-8'- lycopene and iv) the fucoxanthin. Carotenoid producing species such as Microbacterium and Chryseobacterium emerged as the most likely cause of the peculiar reddish pigment production. Indeed, our findings suggest that the peculiar reddish pigment might be produced by these bacterial species.


Subject(s)
Ascomycota/chemistry , Bacteria/classification , Bacteria/isolation & purification , Fruiting Bodies, Fungal/chemistry , Pigments, Biological/analysis , Bacteria/genetics , Bacteria/metabolism , Italy , Metagenome , Pigments, Biological/isolation & purification , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry
17.
Nat Ecol Evol ; 2(12): 1956-1965, 2018 12.
Article in English | MEDLINE | ID: mdl-30420746

ABSTRACT

Tuberaceae is one of the most diverse lineages of symbiotic truffle-forming fungi. To understand the molecular underpinning of the ectomycorrhizal truffle lifestyle, we compared the genomes of Piedmont white truffle (Tuber magnatum), Périgord black truffle (Tuber melanosporum), Burgundy truffle (Tuber aestivum), pig truffle (Choiromyces venosus) and desert truffle (Terfezia boudieri) to saprotrophic Pezizomycetes. Reconstructed gene duplication/loss histories along a time-calibrated phylogeny of Ascomycetes revealed that Tuberaceae-specific traits may be related to a higher gene diversification rate. Genomic features in Tuber species appear to be very similar, with high transposon content, few genes coding lignocellulose-degrading enzymes, a substantial set of lineage-specific fruiting-body-upregulated genes and high expression of genes involved in volatile organic compound metabolism. Developmental and metabolic pathways expressed in ectomycorrhizae and fruiting bodies of T. magnatum and T. melanosporum are unexpectedly very similar, owing to the fact that they diverged ~100 Ma. Volatile organic compounds from pungent truffle odours are not the products of Tuber-specific gene innovations, but rely on the differential expression of an existing gene repertoire. These genomic resources will help to address fundamental questions in the evolution of the truffle lifestyle and the ecology of fungi that have been praised as food delicacies for centuries.


Subject(s)
Ascomycota/genetics , Genome, Fungal , Life History Traits , Mycorrhizae/genetics , Symbiosis , Ascomycota/physiology , DNA, Fungal/analysis , Mycorrhizae/physiology , Phylogeny , Sequence Analysis, DNA
18.
Int J Med Mushrooms ; 20(7): 677-683, 2018.
Article in English | MEDLINE | ID: mdl-30055559

ABSTRACT

Ganoderma lucidum (Curtis) P. Karst., commonly used in traditional Chinese medicine, is characterized by strong genetic and phenotypic variability that reflects its active components. To preserve such a source of pharmacologically active metabolites, specimens must be collected from different geographic regions and their genetic integrity ensured during storage. To this aim, we tested the effect of ultra-low freezing (ULF) at -120°C on the vitality, mycelial growth rate, and fruiting ability of 3 Italian strains of G. lucidum. Results showed that all strains reacted positively to ULF, demonstrating an ability to recover after 3 months of storage without morphological or physiological changes occurring, regardless of treatment. The successful storage of G. lucidum at -120°C opens up the possibility to create a germplasm bank to collect strains of this medicinal fungus from throughout Europe, thereby contributing to the maintenance of its diversity.


Subject(s)
Plants, Medicinal/chemistry , Preservation, Biological/methods , Reishi/chemistry , Freezing , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/growth & development , Mycelium/chemistry , Mycelium/growth & development , Plants, Medicinal/growth & development , Reishi/growth & development
19.
Genome Announc ; 6(25)2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29930051

ABSTRACT

The ascomycete Tuber borchii (Pezizomycetes) is a whitish edible truffle that establishes ectomycorrhizal symbiosis with trees and shrubs. This fungus is ubiquitous in Europe and is also cultivated outside Europe. Here, we present the draft genome sequence of T. borchii strain Tbo3840 (97.18 Mb in 969 scaffolds, with 12,346 predicted protein-coding genes).

20.
Appl Microbiol Biotechnol ; 102(3): 1429-1441, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29189902

ABSTRACT

Iron exopolysaccharide nanoparticles were biogenerated during ferric citrate fermentation by Klebsiella oxytoca DSM 29614. Before investigating their effects on Tuber borchii ("bianchetto" truffle) mycelium growth and morphology, they were tested on human K562 cell line and Lentinula edodes pure culture and shown to be non-toxic. Using these nanoparticles as iron supplement, the truffles showed extremely efficient iron uptake of over 300 times that of a commercial product. This avoided morphological changes in T. borchii due to lack of iron during growth and, with optimum nanoparticle dosage, increased growth without cell wall disruption or alteration of protoplasmatic hyphal content, the nuclei, mitochondria, and rough endoplasmic reticula being preserved. No significant modifications in gene expression were observed. These advantages derive from the completely different mechanism of iron delivery to mycelia compared to commercial iron supplements. The present data, in fact, show the nanoparticles attached to the cell wall, then penetrating it non-destructively without damage to cell membrane, mitochondria, chromatin, or ribosome. Low dosage significantly improved mycelium growth, without affecting hyphal morphology. Increases in hyphal diameter and septal distance indicated a healthier state of the mycelia compared to those grown in the absence of iron or with a commercial iron supplement. These positive effects were confirmed by measuring fungal biomass as mycelium dry weight, total protein, and ergosterol content. This "green" method for biogenerating iron exopolysaccharide nanoparticles offers many advantages, including significant economic savings, without toxic effects on the ectomycorrhizal fungus, opening the possibility of using them as iron supplements in truffle plantations.


Subject(s)
Ferric Compounds/chemistry , Mycorrhizae/drug effects , Nanoparticles/chemistry , Polysaccharides, Bacterial/biosynthesis , Fermentation , Ferric Compounds/pharmacology , Humans , Iron/chemistry , K562 Cells , Klebsiella oxytoca/metabolism , Mycelium/drug effects , Mycelium/growth & development , Mycorrhizae/growth & development , Polysaccharides, Bacterial/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...