Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Psychophysiology ; 59(1): e13952, 2022 01.
Article in English | MEDLINE | ID: mdl-34633670

ABSTRACT

Heart rate variability (HRV) biofeedback, referring to slow-paced breathing (SPB) realized while visualizing a heart rate, HRV, and/or respiratory signal, has become an adjunct treatment for a large range of psychologic and medical conditions. However, the underlying mechanisms explaining the effectiveness of HRV biofeedback still need to be uncovered. This study aimed to disentangle the specific effects of HRV biofeedback from the effects of SPB realized alone. In total, 112 participants took part in the study. The parameters assessed were emotional (valence, arousal, and control) and perceived stress intensity as self-report variables and the root mean square of the successive differences (RMSSD) as a physiologic variable. A main effect of condition was found for emotional valence only, valence being more positive overall in the SPB-HRVB condition. A main effect of time was observed for all dependent variables. However, no main effects for the condition or time x condition interaction effects were observed. Results showed that for PRE and POST comparisons (referring, respectively, to before and after SPB), both SPB-HRVB and SPB-NoHRVB conditions resulted in a more negative emotional valence, lower emotional arousal, higher emotional control, and higher RMSSD. Future research might investigate psychophysiological differences between SPB-HRVB and SPB-NoHRVB across different time periods (e.g., long-term interventions), and in response to diverse psychophysiological stressors.


Subject(s)
Biofeedback, Psychology , Heart Rate/physiology , Psychophysiology , Respiratory Rate , Adult , Arousal , Emotions , Female , Humans , Male , Young Adult
2.
Article in English | MEDLINE | ID: mdl-34886206

ABSTRACT

The practice of slow-paced breathing (SPB) has been linked to a range of positive outcomes, such as decreasing symptoms of depression, anxiety, and stress, as well as increasing well-being. Among the suggested mechanisms of action, SPB has been shown to increase cardiac vagal activity (CVA). The present study aimed to investigate whether there is a dose-response relationship modulating the effects of SPB on CVA. A total of 59 participants were involved in this study. In a within-subject design, participants attended the lab five times, and realized SPB at six cycles per minute with different durations (5, 10, 15, and 20 min), as well as a control condition without SPB. CVA was indexed via the root mean square of successive differences (RMSSD). During SPB, findings showed an increase in RMSSD in all conditions compared to the control condition. However, no differences were found in RMSSD among the different session durations, during SPB or during the resting measurement completed immediately after SPB. Noteworthily, session duration showed an influence on the spontaneous respiratory frequency in the resting measurement occurring immediately after SPB. Specifically, respiratory frequency appears to decrease with session duration, thus potentially contributing to additional relaxing effects.


Subject(s)
Vagus Nerve , Heart Rate , Humans
3.
Article in English | MEDLINE | ID: mdl-34203020

ABSTRACT

Designing emotional intelligence training programs requires first testing the effectiveness of techniques targeting its main dimensions. The aim of this study was to investigate the effects of a brief slow-paced breathing (SPB) exercise on psychophysiological variables linked to emotion regulation, namely cardiac vagal activity (CVA), as well as perceived stress intensity, emotional arousal, and emotional valence. A total of 61 participants completed a 5-min SPB exercise and a control condition of a 5-min rest measurement. CVA was indexed with the root mean square of successive differences (RMSSD). Participants were also asked to rate their perceived stress intensity, emotional arousal, and emotional valence. Results showed that CVA was higher during SPB in comparison to the control condition. Contrary to our hypothesis, perceived stress intensity and emotional arousal increased after SPB, and perceived emotional valence was less positive after SPB. This could be explained by experiencing dyspnea (i.e., breathing discomfort), and the need to get acclimatized to SPB. Consequently, we may conclude that although physiological benefits of SPB on CVA are immediate, training may be required in order to perceive psychological benefits.


Subject(s)
Emotional Regulation , Breathing Exercises , Emotional Intelligence , Heart Rate , Humans , Vagus Nerve
SELECTION OF CITATIONS
SEARCH DETAIL