Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Appl Acarol ; 49(4): 329-38, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19381843

ABSTRACT

The ectoparasitic mite Varroa destructor is currently the most important pest of the honey bee, Apis mellifera. Because mite reproduction occurs within the sealed cell, the direct observation of varroa activity inside the cell is difficult. A video observation method using transparent polystyrol cells containing infested brood was used to analyze the behavior of varroa mites in worker brood of Africanized honey bees. We recorded how mites feed on the larva and pupa, construct a fecal accumulation site and how the bee larva carried out some longitudinal movements around the cell. The feeding activity of the foundress mite varies during the course of the cycle. On the prepupa mites were found to feed often (0.3 +/- 0.2 bouts h(-1)) for a period of 8.7 +/- 8.4 min h(-1) and there was no preference for a specific segment as feeding site. On the opposite, during the pupal stage mites fed less often (0.1 +/- 0.1 bouts h(-1)) for a period of 6.2 +/- 4.0 min h(-1) and almost always at a particular site (92.4%). On pupa, 83.7% of the feeding was on the 2nd abdominal segment (n = 92), and only few perforations were found on the thorax. Varroa shows a preference for defecation in the posterior part of the cell (cell apex), close to the bee's anal zone. We found a high correlation between the position of the feeding site on the pupa and the position of the fecal accumulation on the cell wall. Most infested cells have only one fecal accumulation site and it was the favorite resting site for the mite, where it spent 24.3 +/- 3.9 min h(-1). Longitudinal displacements were observed in 28.0% (n = 25) of the analyzed bee larvae. Turning movements around the cell, from the bottom to the top, were carried out by these larvae, mainly during the second day (47.7 +/- 22.5 min h(-1)), just before pupation, with a total time of 874.9 +/- 262.2 min day(-1) (n = 7 individuals). These results in worker brood of Africanized bees demonstrate adaptations of varroa mites to parasitizing the developing bee inside the capped brood cells.


Subject(s)
Bees/parasitology , Behavior, Animal , Varroidae/physiology , Animals , Bees/growth & development , Defecation , Feces , Feeding Behavior , Larva/parasitology , Pupa/parasitology , Reproduction
2.
Exp Appl Acarol ; 43(1): 25-32, 2007.
Article in English | MEDLINE | ID: mdl-17828439

ABSTRACT

Colony infestation by the parasitic mite, Varroa destructor is one of the most serious problems for beekeeping worldwide. In order to reproduce varroa females, enter worker or drone brood shortly before the cell is sealed. To test the hypothesis that, due to the preference of mites to invade drone brood to reproduce, a high proportion of the mite reproduction should occur in drone cells, a comparative study of mite reproductive rate in worker and drone brood of Africanized honey bees (AHB) was done for 370 mites. After determining the number, developmental stage and sex of the offspring in worker cells, the foundress female mite was immediately transferred into an uninfested drone cell. Mite fertility in single infested worker and drone brood cells was 76.5 and 79.3%, respectively. There was no difference between the groups (X(2)= 0.78, P = 0.37). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring (cells that contain one live adult male and at least one adult female mite) in drone cells (38.1%) compared to worker cells (13.8%) (X(2)= 55.4, P < 0.01). Furthermore, a high level of immature offspring occurred in worker cells and not in drone cells (X(2)= 69, P < 0.01). Although no differences were found in the percentage of non-reproducing mites, more than 74% (n = 85) of the mites that did not reproduce in worker brood, produced offspring when they were transferred to drone brood.


Subject(s)
Bees/parasitology , Host-Parasite Interactions/physiology , Mites/physiology , Animals , Costa Rica , Female , Male , Reproduction/physiology , Sex Factors , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL