Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
Plant Cell Environ ; 44(11): 3655-3666, 2021 11.
Article in English | MEDLINE | ID: mdl-34486744

ABSTRACT

Mistletoe-host systems exemplify an intimate and chronic relationship where mistletoes represent protracted stress for hosts, causing long-lasting impact. Although host changes in morphological and reproductive traits due to parasitism are well known, shifts in their physiological system, altering metabolite concentrations, are less known due to the difficulty of quantification. Here, we use ecometabolomic techniques in the plant-plant interaction, comparing the complete metabolome of the leaves from mistletoe (Viscum album) and needles from their host (Pinus nigra), both parasitized and unparasitized, to elucidate host responses to plant parasitism. Our results show that mistletoe acquires metabolites basically from the primary metabolism of its host and synthesizes its own defence compounds. In response to mistletoe parasitism, pines modify a quarter of their metabolome over the year, making the pine canopy metabolome more homogeneous by reducing the seasonal shifts in top-down stratification. Overall, host pines increase antioxidant metabolites, suggesting oxidative stress, and also increase part of the metabolites required by mistletoe, which act as a permanent sink of host resources. In conclusion, by exerting biotic stress and thereby causing permanent systemic change, mistletoe parasitism generates a new host-plant metabolic identity available in forest canopy, which could have notable ecological consequences in the forest ecosystem.


Subject(s)
Host-Parasite Interactions , Metabolome , Pinus/metabolism , Viscum album/physiology , Forests , Pinus/parasitology , Spain
2.
Sci Data ; 7(1): 203, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32587252

ABSTRACT

This dataset provides long-term information on the presence of the Iberian ibex (Capra pyrenaica hispanica Schimper, 1848) in Sierra Nevada (SE Iberian Peninsula). Data on the abundance and demographic structure of the Iberian ibex population were compiled over the last three decades. Transects were laid out to record different variables such as the number of individuals sighted, the perpendicular distance of each group of Iberian ibex to the transect line and sex as well as age of individuals in the case of males. These data enabled the calculation of population parameters such as density, sex ratio, birth rate, and age structure. These parameters are key for Iberian ibex conservation and management, given that Sierra Nevada harbours the largest population of this species in the Iberian Peninsula. The data set we present is structured using the Darwin Core biological standard, which contains 3,091 events (582 transect walk events and 2,509 group sighting events), 5,396 occurrences, and 2,502 measurements. The occurrences include the sightings of 11,436 individuals (grouped by sex and age) from 1993 to 2018 in a total of 88 transects distributed along Sierra Nevada, of which 33 have been continuously sampled since 2008.


Subject(s)
Goats , Animals , Birth Rate , Population Density , Sex Ratio , Spain
3.
J Chem Ecol ; 45(1): 95-105, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30523519

ABSTRACT

Stress caused by parasitic plants, e.g. mistletoes, alters certain host-plant traits as a response. While several physical implications of the parasite-host relation have been well studied, shifts in the host chemical profile remain poorly understood. Here we compare the chemical profiles of mistletoe (Viscum album subsp. austriacum) leaves and host pine (Pinus nigra subsp. salzmannii) needles and we investigate chemical changes in host needles of trees with different parasite loads (control, low, medium, and high). Our results reveal that despite the intimate contact between mistletoe and host pine, their chemical profiles differed significantly, revealing extremely low concentrations of defense compounds (including a complete lack of terpenes) and high levels of N concentrations in mistletoe leaves. On the other hand, parasitized pines showed unique chemical responses depending on parasite loads. Overall, the content in monoterpenes increased with parasitism. Higher parasitized pines produced higher amounts of defense compounds (phenols and condensed tannins) than less parasitized trees, but amounts in samples of the same year did not significantly differ between parasitized and unparasitized pines. Highly parasitized pines accumulated less N than pines with other parasite loads. The strongest response was found in sesqui- and diterpenes, which were at lower levels in pines under medium and high parasitism. Chemical responses of pines to mistletoe parasitism resembled reactions to other kinds of stress. Low levels induced reactions resembling those against drought stress, while medium and high parasitism elicited responses comparable to those against burning and defoliation.


Subject(s)
Host-Parasite Interactions , Pinus/chemistry , Pinus/parasitology , Viscum album/chemistry , Viscum album/physiology , Parasite Load , Phenols/analysis , Phenols/metabolism , Pinus/physiology , Proanthocyanidins/analysis , Proanthocyanidins/metabolism , Terpenes/analysis , Terpenes/metabolism
4.
New Phytol ; 211(4): 1382-92, 2016 09.
Article in English | MEDLINE | ID: mdl-27105275

ABSTRACT

Parasitic plants are important drivers of community and ecosystem properties. In this study, we identify different mechanisms by which mistletoe (Viscum album subsp. austriacum) can affect soil chemical and biological properties at different temporal stages of parasitism. We quantified the effect of parasitism on host growth and the number of frugivorous mutualists visiting the host canopy. Then we collected, identified, and weighed the organic matter input underneath tree canopies and analyzed its nutrient content. Simultaneously, we analyzed soil samples under tree canopies and examined the chemical properties, microbial abundance, and functional evenness of heterotrophic microbial communities. Mistletoe increased the amount, quality, and diversity of organic matter input beneath the host canopy, directly through its nutrient-rich litter and indirectly through a reduction in host litterfall and an increase in bird-derived debris. All these effects gave rise to enriched hotspots able to support larger and more functionally even soil microbial communities beneath parasitized hosts, the effects of which were accentuated after host death. We conclude that mistletoe, together with the biotic interactions it mediates, plays a key role in intensifying soil resource availability, regulating the functional evenness, abundance, and spatial distribution of soil microbial communities.


Subject(s)
Bacteria/metabolism , Forests , Mistletoe/physiology , Parasites/physiology , Plant Leaves/physiology , Soil Microbiology , Animals , Biomass , Carbon/analysis , Nitrogen/analysis , Phosphorus/analysis , Potassium/analysis , Time Factors , Trees/growth & development
5.
Zookeys ; (552): 137-54, 2016.
Article in English | MEDLINE | ID: mdl-26865820

ABSTRACT

In this data paper, a dataset of passerine bird communities is described in Sierra Nevada, a Mediterranean high mountain located in southern Spain. The dataset includes occurrence data from bird surveys conducted in four representative ecosystem types of Sierra Nevada from 2008 to 2015. For each visit, bird species numbers as well as distance to the transect line were recorded. A total of 27847 occurrence records were compiled with accompanying measurements on distance to the transect and animal counts. All records are of species in the order Passeriformes. Records of 16 different families and 44 genera were collected. Some of the taxa in the dataset are included in the European Red List. This dataset belongs to the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area.

6.
PhytoKeys ; (56): 61-81, 2015.
Article in English | MEDLINE | ID: mdl-26491387

ABSTRACT

In this data paper, we describe the dataset of the Global Change, Altitudinal Range Shift and Colonization of Degraded Habitats in Mediterranean Mountains (MIGRAME) project, which aims to assess the capacity of altitudinal migration and colonization of marginal habitats by Quercus pyrenaica Willd. forests in Sierra Nevada (southern Spain) considering two global-change drivers: temperature increase and land-use changes. The dataset includes information of the forest structure (diameter size, tree height, and abundance) of the Quercus pyrenaica ecosystem in Sierra Nevada obtained from 199 transects sampled at the treeline ecotone, mature forest, and marginal habitats (abandoned cropland and pine plantations). A total of 3839 occurrence records were collected and 5751 measurements recorded. The dataset is included in the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this mountain range.

7.
PhytoKeys ; (46): 89-107, 2015.
Article in English | MEDLINE | ID: mdl-25878552

ABSTRACT

Sierra Nevada mountain range (southern Spain) hosts a high number of endemic plant species, being one of the most important biodiversity hotspots in the Mediterranean basin. The high-mountain meadow ecosystems (borreguiles) harbour a large number of endemic and threatened plant species. In this data paper, we describe a dataset of the flora inhabiting this threatened ecosystem in this Mediterranean mountain. The dataset includes occurrence data for flora collected in those ecosystems in two periods: 1988-1990 and 2009-2013. A total of 11002 records of occurrences belonging to 19 orders, 28 families 52 genera were collected. 73 taxa were recorded with 29 threatened taxa. We also included data of cover-abundance and phenology attributes for the records. The dataset is included in the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area.

8.
PLoS One ; 9(9): e107385, 2014.
Article in English | MEDLINE | ID: mdl-25233342

ABSTRACT

In this study, we analize the functional influence of animals on the plants they interact with in a mediterranean mountain. We hypothesise that seed dispersers, seed predators, and browsers can act as biotic filters for plant communities. We analyse the combined effects of mutualistic (seed dispersal) and antagonistic (seed predation, herbivory) animal interactions in a mosaic landscape of Mediterranean mountains, basing our results on observational and experimental field. Most of the dispersed seeds came from tree species, whereas the population of saplings was composed predominantly of zoochorous shrub species. Seed predators preferentially consumed seeds from tree species, whereas seeds from the dominant fleshy-fruited shrubs had a higher probability of escaping these predators. The same pattern was repeated among the different landscape units by browsers, since they browsed selectively and far more intensely on tree-species saplings than on the surrounding shrubs. In synthesis, our work identifies the major biotic processes that appear to be favoring a community dominated by shrubs versus trees because seed dispersers, predators, and herbivores together favored shrub dispersal and establishment versus trees.


Subject(s)
Biota , Ecosystem , Feeding Behavior , Seed Dispersal , Symbiosis , Animals , Herbivory , Plants , Population Dynamics , Seeds
9.
Oecologia ; 176(1): 139-47, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25004870

ABSTRACT

Mistletoes constitute instructive study cases with which to address the role of generalist consumers in the study of plant-animal interactions. Their ranges of safe sites for recruitment are among the most restricted of any plant; therefore, frugivores specializing in mistletoe have been considered almost indispensable for the seed dispersal of these parasitic plants. However, the absence of such specialists in numerous regions inhabited by many mistletoe species raises the question of whether unspecialized vectors may successfully disperse mistletoe seeds to narrowly defined safe sites. Using the European mistletoe Viscum album subsp. austriacum as a study case, we recorded a broad range of 11 bird species that disperse mistletoe seeds. For these species, we studied the mistletoe-visitation rate and feeding behavior to estimate the quantity component of dispersal effectiveness, and the post-foraging microhabitat use, seed handling, and recruitment probabilities of different microhabitats as a measure of the quality component of effectiveness. Both endozoochory and ectozoochory are valid dispersal mechanisms, as the seeds do not need to be ingested to germinate, increasing seed-dispersal versatility. Thrushes were the most effective dispersers, although they were rather inefficient, whereas small birds (both frugivores and non-frugivores) offered low-quantity but high-quality services for depositing seeds directly upon safe sites. As birds behave similarly on parasitized and non-parasitized hosts, and vectors have broad home ranges, reinfection within patches and the colonization of new patches are ensured by an ample assemblage of generalist birds. Thus, a parasitic plant requiring precision in seed dispersal can rely on unspecialized dispersers.


Subject(s)
Ecosystem , Mistletoe/physiology , Passeriformes/physiology , Seed Dispersal/physiology , Symbiosis/physiology , Animals , Feeding Behavior/physiology , Linear Models , Spain
10.
Am J Bot ; 101(6): 957-964, 2014 06 01.
Article in English | MEDLINE | ID: mdl-24907256

ABSTRACT

• Premise of the study: Canopies are ecologically relevant compartments of forests. Multiple sources of heterogeneity interact within forest canopies due to their structural complexity, which exert major influences on the structure and composition of epiphyte communities. Here, we explore canopy environmental heterogeneity of a Mediterranean pine forest, identifying the key biotic and abiotic factors determining mistletoe (Viscum album subsp. austriacum) recruitment at coarse and fine spatial scales.• Methods: Through field experiments, we assessed the range of suitable host species for V. album subsp. austriacum (hereafter, V. a. austriacum). We characterized the variation in abiotic factors at a fine spatial scale on the host species. Finally, we examined the effects of biotic (predation) and abiotic (light, temperature) factors on the fate of mistletoe seeds and seedlings along host branches.• Key results: We confirmed the tight specificity of V. a. austriacum to pine species, in particular to P. nigra at the local scale. Biotic constraints increased toward the branch interior, with minor effects on apical locations due to the positive effect of pine-needle coverage. Contrarily, abiotic constraints increased toward branch extremities, harming mistletoe seeds by encouraging their desiccation.• Conclusions: Biotic and abiotic variables exert a strong, nonrandom filter on V. album regeneration, resulting in recruitment hotspots at the periphery of the branches and sites with a high probability of recruitment failure at thicker and more exposed locations. The narrow range of suitable host species and the scarcity and spatially restricted recruitment hotspots for V. a. austriacum leads to the clumping of mistletoe populations at the finer spatial scale.


Subject(s)
Forests , Viscum album/growth & development , Environment , Pinus
11.
PhytoKeys ; (35): 1-15, 2014.
Article in English | MEDLINE | ID: mdl-24843285

ABSTRACT

The Sinfonevada database is a forest inventory that contains information on the forest ecosystem in the Sierra Nevada mountains (SE Spain). The Sinfonevada dataset contains more than 7,500 occurrence records belonging to 270 taxa (24 of these threatened) from floristic inventories of the Sinfonevada Forest inventory. Expert field workers collected the information. The whole dataset underwent a quality control by botanists with broad expertise in Sierra Nevada flora. This floristic inventory was created to gather useful information for the proper management of Pinus plantations in Sierra Nevada. This is the only dataset that shows a comprehensive view of the forest flora in Sierra Nevada. This is the reason why it is being used to assess the biodiversity in the very dense pine plantations on this massif. With this dataset, managers have improved their ability to decide where to apply forest treatments in order to avoid biodiversity loss. The dataset forms part of the Sierra Nevada Global Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area.

12.
PLoS One ; 9(1): e87842, 2014.
Article in English | MEDLINE | ID: mdl-24489971

ABSTRACT

The expected and already observed increment in frequency of extreme climatic events may result in severe vegetation shifts. However, stabilizing mechanisms promoting community resilience can buffer the lasting impact of extreme events. The present work analyzes the resilience of a Mediterranean mountain ecosystem after an extreme drought in 2005, examining shoot-growth and needle-length resistance and resilience of dominant tree and shrub species (Pinus sylvestris vs Juniperus communis, and P. nigra vs J. oxycedrus) in two contrasting altitudinal ranges. Recorded high vegetative-resilience values indicate great tolerance to extreme droughts for the dominant species of pine-juniper woodlands. Observed tolerance could act as a stabilizing mechanism in rear range edges, such as the Mediterranean basin, where extreme events are predicted to be more detrimental and recurrent. However, resistance and resilience components vary across species, sites, and ontogenetic states: adult Pinus showed higher growth resistance than did adult Juniperus; saplings displayed higher recovery rates than did conspecific adults; and P. nigra saplings displayed higher resilience than did P. sylvestris saplings where the two species coexist. P. nigra and J. oxycedrus saplings at high and low elevations, respectively, were the most resilient at all the locations studied. Under recurrent extreme droughts, these species-specific differences in resistance and resilience could promote changes in vegetation structure and composition, even in areas with high tolerance to dry conditions.


Subject(s)
Climate Change , Juniperus/physiology , Pinus/physiology , Acclimatization , Altitude , Mediterranean Region
13.
Ecol Appl ; 23(6): 1267-76, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24147400

ABSTRACT

Most of the world's plantations were established on previously disturbed sites with an intensive land-use history. Our general hypothesis was that native forest regeneration within forest plantations depends largely on in situ biological legacies as a source of propagules. To test this hypothesis, we analyzed native oak regeneration in 168 pine plantation plots in southern Spain in relation to land use in 1956, oak patch proximity, and pine tree density. Historical land-use patterns were determined from aerial photography from 1956, and these were compared with inventory data from 2004-2005 and additional orthophoto images. Our results indicate that oak forest regeneration in pine plantations depends largely on land-use legacies, although nearby, well-conserved areas can provide propagules for colonization from outside the plantation, and pine tree density also affected oak recruit density. More intense land uses in the past meant fewer biological legacies and, therefore, lower likelihood of regenerating native forest. That is, oak recruit density was lower when land use in 1956 was croplands (0.004 +/- 0.002 recruits/m2 [mean +/- SE]) or pasture (0.081 +/- 0.054 recruits/m2) instead of shrubland (0.098 +/- 0.031 recruits/m2) or oak formations (0.314 +/- 0.080 recruits/m2). Our study shows that land use in the past was more important than propagule source distance or pine tree density in explaining levels of native forest regeneration in plantations. Thus, strategies for restoring native oak forests in pine plantations may benefit from considering land-use legacies as well as distance to propagule sources and pine density.


Subject(s)
Agriculture , Ecosystem , Pinus/physiology , Quercus/physiology , Spain , Trees
14.
Oecologia ; 173(4): 1613-24, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23797412

ABSTRACT

Drought-induced events of massive tree mortality appear to be increasing worldwide. Species-specific vulnerability to drought mortality may alter patterns of species diversity and affect future forest composition. We have explored the consequences of the extreme drought of 2005, which caused high sapling mortality (approx. 50 %) among 10-year-old saplings of two coexisting pine species in the Mediterranean mountains of Sierra Nevada (Spain): boreo-alpine Pinus sylvestris and Mediterranean P. nigra. Sapling height growth, leaf δ(13)C and δ(18)O, and foliar nitrogen concentration in the four most recent leaf cohorts were measured in dead and surviving saplings. The foliar isotopic composition of dead saplings (which reflects time-integrated leaf gas-exchange until mortality) displayed sharp increases in both δ(13)C and δ(18)O during the extreme drought of 2005, suggesting an important role of stomatal conductance (g(s)) reduction and diffusional limitations to photosynthesis in mortality. While P. nigra showed decreased growth in 2005 compared to the previous wetter year, P. sylvestris maintained similar growth levels in both years. Decreased growth, coupled with a sharper increase in foliar δ(18)O during extreme drought in dead saplings, indicate a more conservative water use strategy for P. nigra. The different physiological behavior of the two pine species in response to drought (further supported by data from surviving saplings) may have influenced 2005 mortality rates, which contributed to 2.4-fold greater survival for P. nigra over the lifespan of the saplings. This species-specific vulnerability to extreme drought could lead to changes in dominance and distribution of pine species in Mediterranean mountain forests.


Subject(s)
Droughts , Pinus/growth & development , Water/physiology , Carbon Isotopes/analysis , Nitrogen/analysis , Oxygen Isotopes/analysis , Photosynthesis , Pinus/chemistry , Pinus/classification , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Transpiration , Seedlings/chemistry , Seedlings/growth & development , Spain , Trees/growth & development
15.
Glob Chang Biol ; 19(8): 2490-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23572443

ABSTRACT

Predicting climate-driven changes in plant distribution is crucial for biodiversity conservation and management under recent climate change. Climate warming is expected to induce movement of species upslope and towards higher latitudes. However, the mechanisms and physiological processes behind the altitudinal and latitudinal distribution range of a tree species are complex and depend on each tree species features and vary over ontogenetic stages. We investigated the altitudinal distribution differences between juvenile and adult individuals of seven major European tree species along elevational transects covering a wide latitudinal range from southern Spain (37°N) to northern Sweden (67°N). By comparing juvenile and adult distributions (shifts on the optimum position and the range limits) we assessed the response of species to present climate conditions in relation to previous conditions that prevailed when adults were established. Mean temperature increased by 0.86 °C on average at our sites during the last decade compared with previous 30-year period. Only one of the species studied, Abies alba, matched the expected predictions under the observed warming, with a maximum abundance of juveniles at higher altitudes than adults. Three species, Fagus sylvatica, Picea abies and Pinus sylvestris, showed an opposite pattern while for other three species, such as Quercus ilex, Acer pseudoplatanus and Q. petraea, we were no able to detect changes in distribution. These findings are in contrast with theoretical predictions and show that tree responses to climate change are complex and are obscured not only by other environmental factors but also by internal processes related to ontogeny and demography.


Subject(s)
Global Warming , Plant Dispersal , Trees/physiology , Acer/growth & development , Acer/physiology , Altitude , Europe , Fagaceae/growth & development , Fagaceae/physiology , Models, Biological , Pinaceae/growth & development , Pinaceae/physiology , Species Specificity , Time Factors , Trees/growth & development
16.
PLoS One ; 8(3): e59824, 2013.
Article in English | MEDLINE | ID: mdl-23555794

ABSTRACT

Global change triggers shifts in forest composition, with warming and aridification being particularly threatening for the populations located at the rear edge of the species distributions. This is the case of Scots pine (Pinus sylvestris) in the Mediterranean Basin where uncertainties in relation to its dynamics under these changing scenarios are still high. We analysed the relative effect of climate on the recruitment patterns of Scots pine and its interactions with local biotic and abiotic variables at different spatial scales. Number of seedlings and saplings was surveyed, and their annual shoot growth measured in 96 plots located across altitudinal gradients in three different regions in the Iberian Peninsula. We found a significant influence of climate on demography and performance of recruits, with a non-linear effect of temperature on the presence of juveniles, and a positive effect of precipitation on their survival. Abundance of juveniles of P. sylvestris that underwent their first summer drought was skewed towards higher altitudes than the altitudinal mean range of the conspecific adults and the optimum elevation for seedlings' emergence. At local level, light availability did not influence juveniles' density, but it enhanced their growth. Biotic interactions were found between juveniles and the herb cover (competition) and between the number of newly emerged seedlings and shrubs (facilitation). Results also highlighted the indirect effect that climate exerts over the local factors, modulating the interactions with the pre-existing vegetation that were more evident at more stressful sites. This multiscale approach improves our understanding of the dynamics of these marginal populations and some management criteria can be inferred to boost their conservation under the current global warming.


Subject(s)
Climate Change , Pinus sylvestris/growth & development , Climate , Ecosystem , Geography , Global Warming , Mediterranean Region , Spain , Temperature , Time Factors , Trees
17.
Oecologia ; 169(3): 833-44, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22218941

ABSTRACT

The understanding of the impact of extreme climatic events under a global climate change scenario is crucial for the accurate forecast of future plant community dynamics. We have experimentally assessed the effect of drier and wetter summer conditions on the recruitment probabilities and the growth of seedlings from eight woody species representative of the most important functional groups in the community, pioneer shrubs, mid-successional shrubs and trees, across the main habitats in the study area (open habitat, shrubland, and forest). Our hypothesis proposes that wet summer conditions would represent a good opportunity for tree species regeneration, enhancing both forest maintenance and expansion. A drier summer scenario, on the other hand, would limit forest regeneration, and probably hinder the colonization of nearby habitats. We found a habitat effect on the emergence, survival, and final biomass, whereas different climate scenarios affected seedling survival and biomass. A wet summer boosted growth and survival, whereas greater drought reduced survival only in some cases. These results were modulated by the habitat type. Overall, shrub species presented higher survival and growth and were less affected by more severe drought, whereas some tree species proved to be extremely dependent on wet summer conditions. We conclude that the reduction in frequency of wet summers predicted for the coming decades in Mediterranean areas will have greater consequences for species recruitment than will increased drought. The different response of the species from the various functional groups has the potential to alter the composition and dominance of future plant communities.


Subject(s)
Climate Change , Droughts , Ecosystem , Magnoliopsida/growth & development , Rain , Seedlings/growth & development , Mediterranean Region , Spain
18.
Ecol Appl ; 20(4): 1053-60, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20597289

ABSTRACT

This study examines the consequences of adjacent elements for a given patch, through their effects on zoochorous dispersion by frugivorous birds. The case study consists of pine plantations (the focal patch) adjacent to other patches of native vegetation (mixed patches of native forest and shrublands), and/or pine plantations. Our hypothesis is that input of native woody species propagules generated by frugivorous birds within plantations strongly depends on the nature of the surrounding vegetation. To test this hypothesis, we studied frugivorous-bird abundance, seed dispersion, and seedling establishment in nine pine plantation plots in contact with patches of native vegetation. To quantify adjacency arrangement effects, we used the percentage of common border between a patch and each of its adjacent elements. Frugivorous bird occurrence in pine plantations is influenced by the adjacent vegetation: the greater the contact with native vegetation patches, the more abundant were the frugivorous birds within pine plantations. Furthermore, frugivorous birds introduce into plantations the seeds of a large sample of native fleshy-fruited species. The results confirm the hypothesis that zoochorous seed rain is strongly determined by the kind of vegetation surrounding a given plantation. This finding underlines the importance of the composition of the mosaic surrounding plantations and the availability of mobile link species as key landscape features conditioning passive restoration processes.


Subject(s)
Birds , Ecosystem , Forestry , Fruit , Pinus sylvestris , Animals , Seedlings , Spain
19.
Conserv Biol ; 24(4): 1070-9, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20136873

ABSTRACT

Seed dispersal by animals is considered a pivotal ecosystem function that drives plant-community dynamics in natural habitats and vegetation recovery in human-altered landscapes. Nevertheless, there is a lack of suitable ecological knowledge to develop basic conservation and management guidelines for this ecosystem service. Essential questions, such as how well the abundance of frugivorous animals predicts seeding function in different ecosystems and how anthropogenic landscape heterogeneity conditions the role of dispersers, remain poorly answered. In three temperate ecosystems, we studied seed dispersal by frugivorous birds in landscape mosaics shaped by human disturbance. By applying a standardized design across systems, we related the frequency of occurrence of bird-dispersed seeds throughout the landscape to the abundance of birds, the habitat features, and the abundance of fleshy fruits. Abundance of frugivorous birds in itself predicted the occurrence of dispersed seeds throughout the landscape in all ecosystems studied. Even those landscape patches impoverished due to anthropogenic disturbance received some dispersed seeds when visited intensively by birds. Nonetheless, human-caused landscape degradation largely affected seed-deposition patterns by decreasing cover of woody vegetation or availability of fruit resources that attracted birds and promoted seed dispersal. The relative role of woody cover and fruit availability in seed dispersal by birds differed among ecosystems. Our results suggest that to manage seed dispersal for temperate ecosystem preservation or restoration one should consider abundance of frugivorous birds as a surrogate of landscape-scale seed dispersal and an indicator of patch quality for the dispersal function; woody cover and fruit resource availability as key landscape features that drive seedfall patterns; and birds as mobile links that connect landscape patches of different degrees of degradation and habitat quality via seed deposition.


Subject(s)
Birds/physiology , Conservation of Natural Resources/methods , Demography , Ecosystem , Feeding Behavior/physiology , Fruit/physiology , Seeds/physiology , Trees , Animals , Argentina , Fruit/cytology , Population Dynamics , Spain
20.
Ecol Appl ; 19(8): 2124-41, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20014583

ABSTRACT

The ecological impacts of forest plantations are a focus of intense debate, from studies that consider plantations as "biological deserts" to studies showing positive effects on plant diversity and dynamics. This lack of consensus might be influenced by the scarcity of studies that examine how the ecological characteristics of plantations vary along abiotic and biotic gradients. Here we conducted a large-scale assessment of plant regeneration and diversity in plantations of southern Spain. Tree seedling and sapling density, plant species richness, and Shannon's (H') diversity index were analyzed in 442 pine plantation plots covering a wide gradient of climatic conditions, stand density, and distance to natural forests that act as seed sources. Pronounced variation in regeneration and diversity was found in plantation understories along the gradients explored. Low- to mid-altitude plantations showed a diverse and abundant seedling bank dominated by Quercus ilex, whereas high-altitude plantations showed a virtually monospecific seeding bank of Pinus sylvestris. Regeneration was null in plantations with stand densities exceeding 1500 pines/ha. Moderate plantation densities (500-1000 pines/ha) promoted recruitment in comparison to low or null canopy cover, suggesting the existence of facilitative interactions. Quercus ilex recruitment diminished exponentially with distance to the nearest Q. ilex forest. Richness and H' index values showed a hump-shaped distribution along the altitudinal and radiation gradients and decreased monotonically along the stand density gradient. From a management perspective, different strategies will be necessary depending on where a plantation lies along the gradients explored. Active management will be required in high-density plantations with arrested succession and low diversity. Thinning could redirect plantations toward more natural densities where facilitation predominates. Passive management might be recommended for low- to moderate-density plantations with active successional dynamics (e.g., toward oak or pine-oak forests at low to mid altitudes). Enrichment planting will be required to overcome seed limitation, especially in plantations far from natural forests. We conclude that plantations should be perceived as dynamic systems where successional trajectories and diversity levels are determined by abiotic constraints, complex balances of competitive and facilitative interactions, the spatial configuration of native seed sources, and species life-history traits.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Environmental Monitoring/methods , Pinus/physiology , Trees , Forestry/methods , Likelihood Functions , Mediterranean Region , Models, Biological , Spain
SELECTION OF CITATIONS
SEARCH DETAIL