Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Obes (Lond) ; 42(4): 618-624, 2018 04.
Article in English | MEDLINE | ID: mdl-29158541

ABSTRACT

BACKGROUND/OBJECTIVES: We aimed to evaluate mitochondrial biogenesis (MB), structure, metabolism and dysfunction in abdominal adipose tissue from male pediatric patients with obesity. SUBJECTS/METHODS: Samples were collected from five children with obesity (percentile ⩾95) and five eutrophic boys (percentile ⩾5/⩽85) (8-12 years old) following parental informed consent. We analyzed the expression of key genes involved in MB (sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor-γ (PPARγ), PPARγ coactivator-1α (PGC1α), nuclear respiratory factors 1 and 2 (NRF1, NRF2) and mitochondrial transcription factor A (TFAM) and surrogates for mitochondrial function/structure/metabolism (porin, TOMM20, complex I and V, UCP1, UCP2, SIRT3, SOD2) by western blot. Citrate synthase (CS), complex I (CI) activity, adenosine triphosphate (ATP) levels, mitochondrial DNA (mtDNA) content and oxidative stress end points were also determined. RESULTS: Most MB proteins were significantly decreased in samples from children with obesity except complex I, V and superoxide dismutase-2 (SOD2). Similarly, CS and CI activity showed a significant reduction, as well as ATP levels and mtDNA content. PPARγ, PGC1α, complex I and V and SOD2 were hyperacetylated compared with lean samples. Concurrently, in samples from children with obesity, we found decreased SOD2 activity and redox state imbalance highlighted by decreased reduced glutathione/oxidized glutathione (GSH/GSSG) ratio and significant increases in protein carbonylation. CONCLUSIONS: Adipose tissue from children with obesity demonstrates a dysregulation of key modulators of MB and organelle structure, and displays hyperacetylation of key proteins and altered expression of upstream regulators of cell metabolism.


Subject(s)
Adipose Tissue/physiopathology , Mitochondria/physiology , Organelle Biogenesis , Pediatric Obesity/physiopathology , Acetylation , Adipose Tissue/cytology , Adipose Tissue/metabolism , Child , DNA, Mitochondrial/metabolism , Humans , Male , Mitochondrial Proteins/analysis , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Oxidative Stress/physiology , Pediatric Obesity/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...