Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Res ; 252(Pt 3): 119080, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714220

ABSTRACT

Coastal cities are major centers of economic activity, which at the same time has negative consequences for the environment. The present study aimed to determine the concentrations and sources of PTEs in the urban soils of Taganrog, as well as to assess the ecological and human health risks. A total of 47 urban and 5 background topsoils samples were analyzed by ICP-MS and ICP-AES. A significant excess of Cu, Zn, and Sb was noted in urban soils compared to the upper continental crust and average world-soil (1.7-2.9 times). Statistical analysis showed that the elements in soils were of geogenic, mixed and anthropogenic origin. According to the single pollution index (PI), the greatest danger of soil pollution was represented by anthropogenic elements, namely Cu, W, Pb, Zn, Cd, and Sn, the levels of which were increased in residential and industrial areas. The median contents of As, Mn, Cr, Sr, Mo, Sb, Cu, W, Pb, and Zn were 1.1-2.1 times higher, while Cd and Sn were 2.5 folds higher in the urban soils compared to the background ones. The total pollution index (ZC) showed that only 15% of the soils had high level of pollution, which is typical for the industrial areas. Overall ecological risks were negligible or low in 92% of soils, and were mainly due to elevated levels of Cu, Zn, As, and Pb. Non-carcinogenic risks to humans were mainly related to exposure to La and Pb. The hazard index (HI) values for all PTEs were less than ten, indicating that overall non-carcinogenic risk for adults and children was low-to-moderate and, moderate, respectively. The total carcinogenic risk (TCR) exceeded threshold and corresponded to low risk, with Pb, As, and Co being the most important contributors. Thus, the industrial activities of Taganrog is the main source of priority pollutants.


Subject(s)
Cities , Environmental Monitoring , Soil Pollutants , Risk Assessment , Soil Pollutants/analysis , Humans , Soil/chemistry , Metals, Heavy/analysis
2.
Environ Geochem Health ; 45(1): 101-119, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34195905

ABSTRACT

The pollution of floodplain, deltaic and adjacent coastal soils in large fluvial systems, considered an urgent environmental problem, as well as potentially toxic elements in such environments, can negatively affect aquatic ecosystems, as well as pose significant risks to human health. This paper is devoted to the geochemistry of potentially toxic elements in soils of the Lower Don basin, which is one of the largest and most anthropogenically transformed water bodies in Southern Russia, as well as the adjacent areas of the Taganrog Bay coast. The median element concentrations in the soils of the study area were consistent with the world soil average and the contents of elements in background soils. Comparative assessment of the spatial distributions as well as the results of Pearson's correlations, cluster analysis and principal component analysis showed that Cr, Ni, Cu and Zn are predominantly of natural origin; Mn and As are of mixed sources; and Cd and Pb are predominantly of anthropogenic origin. The geochemical anomalies of elements were associated with the impact of local anthropogenic sources. Geochemical background values for Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soils of the Lower Don and the Taganrog Bay coast determined using the 'median + 2 median absolute deviations' approach are presented. The highest values of the integrated pollution indices were observed in floodplain soils of small rivers.


Subject(s)
Metals, Heavy , Soil Pollutants , Humans , Soil/chemistry , Environmental Monitoring/methods , Metals, Heavy/analysis , Ecosystem , Bays , Cadmium/analysis , Lead/analysis , Soil Pollutants/analysis , Risk Assessment , China
3.
Environ Geochem Health ; 44(2): 349-368, 2022 Feb.
Article in English | MEDLINE | ID: mdl-32761413

ABSTRACT

Lake Atamanskoye is one of the most polluted aquatic environments in the South of Russia. This water body was affected by long-term pollution by effluent from industrial rayon plants located in the city of Kamensk-Shakhtinsky. Accumulation of pollutants resulted in the degradation of Lake Atamanskoye, which is currently drained. This research focused on the geochemical transformation of soils and vegetation within the territory of the former water body and its surroundings. Methods of study included the evaluation of potentially toxic elements (PTEs) in soils and plants by X-ray fluorescence, as well as the contents of their forms by sequential extraction and statistical processing of the data. The results revealed that Spolic Technosols and Fluvisols represent the most widespread soils within Lake Atamanskoye. The concentration of metals found in the soils of the lakebed is several orders of magnitude higher than the regional geochemical background and world soil baseline values due to long-term industrial pollution. The natural and technogenic soils were subdivided into two groups according to pH. Alkaline soils in the presence of carbonates were characterised by high levels of PTEs, while acidic soils with higher proportions of exchangeable fractions and higher potential for metal accumulation in adjacent plants had lower levels of PTEs.


Subject(s)
Metals, Heavy , Soil Pollutants , Cellulose , Environmental Monitoring , Lakes , Metals, Heavy/analysis , Rivers , Soil/chemistry , Soil Pollutants/analysis
4.
Environ Geochem Health ; 44(2): 387-398, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34319461

ABSTRACT

Organic matter (OM) and enzymes activity can act as indicators of the time and level of soil contamination with heavy metal. The goal of this study is evaluation of the effect of chronic long-term soil contamination with Cu on OM and biological activity in Spolic Technosols. The monitoring plot is located in the zone of industrial wastewater storage and sludge reservoirs in the Seversky Donets River flood plain. The total amount of Cu in the investigated soils varied greatly from 52 to 437 mg/kg. The results of Cu sequential fractionation the contaminated soil have shown that the chemical fraction composition of metal changed when the soil contamination level increased. The amount of Cu compounds associated with OM and Fe and Mn oxides was also higher. Fractions of OM from the humic and fulvic acids groups were studied. Soil was subjected to extraction with cold and hot water, and the content of water-soluble OM (WSOM) was determined. An increased solubility of humic and fulvic acids as well as elevated content of cold and hot extraction WSOM was established. The cold-extracted amount of WSOM increased with an enhance in the Cu content. The long-term contamination of soil with Cu leads to an adaptation of microorganisms to this adverse environmental factor, and this adaptation is manifested in the WSOM content increase. The effect of Cu contamination on microbiological activity was assessed by plate-counting culturable microorganisms and determining urease and dehydrogenase enzymatic activity. A high level of soil contamination with Cu showed a noticeable negative effect on the number of soil bacteria; however, active and potentially active bacteria were observed even in the highly contaminated soils. The changes in soil OM and microbial communities caused by Cu pollution can lead to disruption of ecosystem functioning.


Subject(s)
Metals, Heavy , Soil Pollutants , Copper/analysis , Ecosystem , Metals, Heavy/chemistry , Metals, Heavy/toxicity , Soil/chemistry , Soil Pollutants/analysis
5.
Plants (Basel) ; 10(5)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922010

ABSTRACT

The presence of heavy metals in the soil could impose serious problems on soil-plant systems due to the accumulation of heavy metals in plants. Even vital elements such as Cu and Zn have a toxic effect in the case of excessive intake by living organisms. The present work aimed to investigate the content of loosely bound (exchangeable, complexed, and specifically sorbed) compounds of Cu and Zn and their availability to spring barley (Hordeum sativum distichum) in contaminated Haplic Chernozem soil under the conditions of a model experiment (five approximate permissible concentrations (APC) and 10 APC of metal). Changes in the bioavailability of the metals upon application of carbon sorbents were observed. An increase in loosely bound metal compounds has been shown under conditions of soil contamination with metals (up to 57% of the total content). The increase in the availability of Cu in the soil was mainly due to the formation of complexed metal forms with organic matter (up to 17%). The availability of Zn was found to be associated with an increase in exchangeable (up to 21%) and specifically sorbed compounds (up to 27%). Granular activated carbon (GAC) and biochar have high sorption properties. A decrease in the content of loosely bound compounds of metals was established, especially in the most mobile forms such as exchangeable and complexed forms. The introduction of sorbents into the soil opened up a new venue for binding heavy metals in situ, eventually leading to a decrease in their bioavailability. The inactivation of Cu and Zn in the soil upon the application of sorbents led to a decrease in metal absorption by spring barley. The highest efficiency of biochar application was established at a dose of 2.5% and 5% in soil contaminations of 5 APC and 10 APC of Cu or Zn. The efficiency of the use of sorbents was more influenced by the dose of application than by the type of sorbent. There was no significant difference between biochar and GAC. Stabilization and inactivation of metals may improve soil fertility and plant growth.

6.
Ecotoxicol Environ Saf ; 208: 111471, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33068982

ABSTRACT

Potentially toxic elements (PTE) pollution has a pronounced negative effect on the soil and its components. The characteristics of soil organic matter and the activity of soil enzymes can serve as sensitive indicators of the degree of changes occurring in the soil. This study aims to assess the effect of long-term severe soil contamination with Zn and Cu on water-soluble organic matter (WSOM) and the associated changes in the biochemical activity of microorganisms. The total content of Zn and Cu in the studied soils varies greatly: Zn from 118 to 65,311 mg/kg, Cu from 52 to 437 mg/kg. The content of WSOM was determined using cold and hot extraction. It was revealed that the WSOM, extracted with cold water is a sensitive indicator reflecting the nature of the interaction of Zn and Cu with it. With an increase in the Cu and Zn content, the amount of WSOM extracted with cold water increases due to rise in the complex-bound metal compounds associated with it. The content of complex-bound compounds Zn in Spolic Technosols reaches 50% of the total metal content. It is shown that one of the biogeochemical mechanisms of microorganisms' adaptation to metal contamination is clearly manifested by the increase in the content of WSOM. The precipitation of metal carbonates develops in the soil which reduces the mobility and toxicity of PTE. Due to this mechanism, a decrease in the activity of dehydrogenases and urease was not prominent in all studied soils, despite the very high level of pollution and the transformation of organic matter. The study of the relationship of PTE with the most easily transformed part of WSOM and the activity of soil enzymes is of great importance for an objective assessment of possible environmental risks.


Subject(s)
Copper/analysis , Soil Pollutants/analysis , Zinc/analysis , Copper/toxicity , Environmental Pollution/analysis , Environmental Pollution/statistics & numerical data , Metals , Metals, Heavy/analysis , Soil/chemistry , Soil Pollutants/toxicity , Water , Zinc/toxicity
7.
Environ Geochem Health ; 43(4): 1427-1439, 2021 Apr.
Article in English | MEDLINE | ID: mdl-31522310

ABSTRACT

In recent decades, the problem of the constantly increasin level of anthropogenic load on the environment is becoming more and more acute. Some of the most dangerous pollutants entering the environment from industrial emissions are heavy metals. These pollutants are not susceptible to biodegradation over time, which leads to their accumulation in the environment in dangerous concentrations. The purpose of this work is to study the sustainability of cultivated and wild plants of the Poaceae family to aerotechnogenic pollution in the soil. The content of heavy metals in couch grass (Elytrigia repens (L.) Nevski), meadow bluegrass (Poa pratensis L.) and soft wheat (Triticum aestivum) plants grown in the impact zone of Novocherkassk Power Station has been analyzed. Contamination of cultivated and wild cereals with Pb, Zn, Ni and Cd has been established. It has been shown that the accumulation of heavy metals is individual for each plant species. An average and close correlation have been established between the total HM content and the content of their mobile forms in the soil and their content in plants. For the plants studied, the translocation factor (TF) and the distribution coefficient (DC) of HM have been calculated. The TF is formed by the ratio of the concentration of an element in the root plant dry weight to the content of its mobile compounds in the soil. The DC value makes it possible to estimate the capacity of the aboveground parts of plants to absorb and accumulate elements under soil pollution conditions and is determined as the ratio of the metal content in the aboveground biomass to its concentration in the roots. TF and DC values have shown a significant accumulation of elements by plants from the soil, as well as their translocation from the root system to the aboveground part. It has been revealed that even within the same Poaceae family, cultural species are more sensitive to man-made pollution than wild-growing ones.


Subject(s)
Crops, Agricultural/drug effects , Metals, Heavy/toxicity , Poaceae/physiology , Soil Pollutants/toxicity , Agriculture , Biodegradation, Environmental , Crops, Agricultural/metabolism , Crops, Agricultural/physiology , Edible Grain/drug effects , Edible Grain/metabolism , Edible Grain/physiology , Metals, Heavy/analysis , Poaceae/drug effects , Poaceae/metabolism , Russia , Soil Pollutants/analysis , Species Specificity , Triticum/drug effects , Triticum/metabolism
8.
Environ Res ; 194: 110605, 2021 03.
Article in English | MEDLINE | ID: mdl-33316230

ABSTRACT

The Kastanozem complex in the dry steppe of southern Russia underlies an artificially-constructed forest strips. Deep ploughing to a depth of 45 cm was used to process the soil prior to planting. Between 20 and 40 cm depth, soil density was high, 1.57 t m-3. Soil hardness was also high, 440 psi. Soil aggregates greater than 5 cm in size were impermeable to tree roots. The content of such aggregates was high, comprising 35%. The number of tree roots with diameters greater than 0.5 cm that cross the soil profile was as low as 0.15 to 0.3 pcs cm-2. The soil matric potential signifying water availability was low in the vegetation period -0.9 MPa to a depth of 1.0 m. According to modelling experiments, the main salt components in the soil solution drive the transfer of soil organic matter (SOM) and heavy metals (HM). The composition of the soil solution determined by the calcium carbonate equilibrium (CCE) and the association and complexation of ions. ION-3 software was used to calculate the ion equilibrium in the soil solution. Macro-ions Cа2+, Mg2+, SO42-, and CO32- partly bonded as ion pairs. Oversaturation of the soil solution with CaCO3 was calculated according to the analytical content of macro-ion, which was high up to 1000 units, and its value decreased in response to ionic strength, activity, association, complexation, and thermodynamic equilibrium of macro-ions in the soil solution. Oversaturation calculated for Salic Solonetz and Gleyic Solonetz soil solutions was small considering the SOM content. Calculations indicate the profile and lateral loss of C from the soil to the vadose zone. The content of Pb in the soil solution was calculated sirca 75%-80%. The calculated coefficient of Pb2+ association was as high as 52.0. The probability of Pb passivation by SOM in the Kastanozem complex was significant. The probability of uncontrolled transfer and accumulation of HM in the soil and vadose zone was high. Biogeosystem Technique (BGT*) transcendental methodology, an innovative methodology created for stable geomorphological system formation to achieve sustainable agriculture and silviculture, was applied. The BGT* elements were: intra-soil milling of the 30-60 cm soil layer for geophysical conditioning; intra-soil continuously-discrete pulse watering for plants and trees to improve the hydrologic regime. The BGT* methodology reduced HM mobility, controlled biodegradation, enriched nutrient biogeochemical cycling, increased C content, increased soil productivity, and reversible carbon sequester in biological form.


Subject(s)
Forests , Soil , Carbon/analysis , Models, Theoretical , Russia , Thermodynamics
9.
Environ Geochem Health ; 42(8): 2495-2518, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31522311

ABSTRACT

Biochar, a carbonaceous material, is increasingly used in the remediation of the anthropogenically polluted soils and the restoration of their ecological functions. However, the interaction mechanisms among biochar, inorganic and organic soil properties and soil biota are still not very clear. The effect of biochar on soil microorganisms is very diverse. Several mechanisms of these interactions were suggested. However, a well acceptable mechanism of biochar effect on soil microorganisms is still missing. Therefore, efforts were made to examine and proposed a mechanism of the interactions between biochar and microorganisms, as well as existing problems of biochar impacts on main groups of soil enzymes, the composition of the microbiota and the detoxification (heavy metals) and degradation (polycyclic aromatic hydrocarbons) of soil pollutants. The data on the process of biochar colonization by microorganisms and the effect of volatile pyrolysis products released by biochar on the soil microbiota were analysed in detail. The effects of biochar on the physico-chemical properties of soils, the content of mineral nutrients and the response of microbial communities to these changes are also discussed. The information provided here may contribute to the solution of the feasibility, effectiveness and safety of the biochar questions to enhance the soil fertility and to detoxify pollutants in soils.


Subject(s)
Charcoal , Soil Microbiology , Soil Pollutants/metabolism , Biodegradation, Environmental , Hydrogen-Ion Concentration , Metals, Heavy/metabolism , Microbiota , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL