Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
Langmuir ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967501

ABSTRACT

Breast cancer is a common malignant tumor arising in normal mammary epithelial tissues. Nearly 75% of the patients with advanced mammary cancer develop bone metastases, resulting in secondary tumor growth, osteolytic bone degradation, and poor prognosis. The bone matrix comprises a highly hierarchical architecture and is composed of a nonmineral organic part, a predominantly type-I collagen, and a mineral inorganic part composed of hydroxyapatite (HA) nanocrystals (Ca10(PO4)6(OH)2). Although there has been extensive research indicating that the material properties of bone minerals affect metastatic breast cancer, it remains unclear how the microenvironment of the bone matrix, such as the roughness, which changes as a result of osteolytic bone remodeling, affects this disease. In this study, we created HA coatings in situ on polyelectrolyte multilayers (PEMs) by incubating PEMs in a mixture of phosphate and calcium ions. The HA films with distinctive roughness were successfully collected by controlling the incubation time, which served as the simulated microenvironment of the bone matrix. MDA-MB231 breast cancer cells were cultured on HA films, and an optimal roughness was observed in the adhesion, proliferation, and expression of two cytokines closely related to bone metastasis. This study contributed to the understanding of the effect of the microenvironment of the bone matrix, such as the roughness, on the metastasis behavior of breast cancer.

2.
Mater Today Bio ; 27: 101108, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38948091

ABSTRACT

The complex biological process of osseointegration and the bio-inertness of bone implants are the major reasons for the high failure rate of long-term implants, and have also promoted the rapid development of multifunctional implant coatings in recent years. Herein, through the special design of peptides, we use layer-by-layer assembly technology to simultaneously display two peptides with different biological functions on the implant surface to address this issue. A variety of surface characterization techniques (ellipsometry, atomic force microscopy, photoelectron spectroscopy, dissipation-quartz crystal microbalance) were used to study in detail the preparation process of the dual peptide functional coating and the physical and chemical properties, such as the composition, mechanical modulus, stability, and roughness of the coating. Compared with single peptide functional coatings, dual-peptide functionalized coatings had much better performances on antioxidant, cellular adhesion in early stage, proliferation and osteogenic differentiation in long term, as well as in vivo osteogenesis and osseointegration capabilities. These findings will promote the development of multifunctional designs in bone implant coatings, as a coping strategy for the complexity of biological process during osteointegration.

3.
Chem Commun (Camb) ; 60(52): 6683-6686, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38860957

ABSTRACT

This study introduces boronic ester-based ROS-responsive amphiphilic copolymers for antioxidant drug delivery. Tuning the hydrophobic/hydrophilic balance optimized the size, curcumin encapsulation, ROS-triggered release, cellular uptake, and intracellular ROS scavenging. The lead P1b formulation self-assembled into stable 10 nm micelles enabling rapid ROS-triggered curcumin release and preferential cellular internalization. P1b eliminated over 90% of pathogenic intracellular ROS within 10 minutes, demonstrating a rapid antioxidant therapy.


Subject(s)
Boronic Acids , Curcumin , Esters , Polymers , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Esters/chemistry , Esters/pharmacology , Humans , Boronic Acids/chemistry , Curcumin/chemistry , Curcumin/pharmacology , Polymers/chemistry , Micelles , Hydrophobic and Hydrophilic Interactions , Antioxidants/chemistry , Antioxidants/pharmacology , Drug Carriers/chemistry , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis , Drug Liberation , Drug Delivery Systems , Cell Survival/drug effects , Molecular Structure
4.
Adv Mater ; : e2314126, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819852

ABSTRACT

Pathological ocular neovascularization resulting from retinal ischemia constitutes a major cause of vision loss. Current anti-VEGF therapies rely on burdensome intravitreal injections of Bevacizumab (Beva). Herein ultrasmall polymeric micelles encapsulating Beva (P@Beva) are developed for noninvasive topical delivery to posterior eye tissues. Beva is efficiently loaded into 11 nm micelles fabricated via self-assembly of hyperbranched amphiphilic copolymers. The neutral, brush-like micelles demonstrate excellent drug encapsulation and colloidal stability. In vitro, P@Beva enhances intracellular delivery of Beva in ocular cells versus free drug. Ex vivo corneal and conjunctival-sclera-choroidal tissues transport after eye drops are improved 23-fold and 7.9-fold, respectively. Anti-angiogenic bioactivity is retained with P@Beva eliciting greater inhibition of endothelial tube formation and choroid sprouting over Beva alone. Remarkably, in an oxygen-induced retinopathy (OIR) model, topical P@Beva matching efficacy of intravitreal Beva injection, is the clinical standard. Comprehensive biocompatibility verifies safety. Overall, this pioneering protein delivery platform holds promise to shift paradigms from invasive intravitreal injections toward simplified, noninvasive administration of biotherapeutics targeting posterior eye diseases.

6.
ACS Nano ; 18(11): 8209-8228, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38452114

ABSTRACT

Protein drugs have been widely used in treating various clinical diseases because of their high specificity, fewer side effects, and favorable therapeutic effect, but they greatly suffer from their weak permeability through tissue barriers, high sensitivity to microenvironments, degradation by proteases, and rapid clearance by the immune system. Herein, we disrupted the standard protocol where protein drugs must be delivered as the cargo via a delivery system and innovatively developed a free entrapping matrix strategy by simply mixing bevacizumab (Beva) with zinc ions to generate Beva-NPs (Beva-Zn2+), where Beva is coordinatively cross-linked by zinc ions with a loading efficiency as high as 99.2% ± 0.41%. This strategy was universal to generating various protein NPs, with different metal ions (Cu2+, Fe3+, Mg2+, Sr2+). The synthetic conditions of Beva-NPs were optimized, and the generated mechanism was investigated in detail. The entrapment, releasing profile, and the bioactivities of released Beva were thoroughly studied. By using in situ doping of the fourth-generation polyamindoamine dendrimer (G4), the Beva-G4-NPs exhibited extended ocular retention and penetration through biobarriers in the anterior segment through transcellular and paracellular pathways, effectively inhibiting corneal neovascularization (CNV) from 91.6 ± 2.03% to 13.5 ± 1.87% in a rat model of CNV. This study contributes to engineering of protein NPs by using a facile strategy for overcoming the weaknesses of protein drugs and protein NPs, such as weak tissue barrier permeability, low encapsulation efficiency, poor loading capacity, and susceptibility to inactivation.


Subject(s)
Corneal Neovascularization , Nanoparticles , Rats , Animals , Corneal Neovascularization/drug therapy , Nanoparticles/therapeutic use , Ions , Zinc
7.
Mater Today Bio ; 25: 100958, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38327975

ABSTRACT

Cirrhosis is an aggressive disease, and over 80 % of liver cancer patients are complicated by cirrhosis, which lacks effective therapies. Transplantation of mesenchymal stem cells (MSCs) is a promising option for treating liver cirrhosis. However, this therapeutic approach is often challenged by the low homing ability and short survival time of transplanted MSCs in vivo. Therefore, a novel and efficient cell delivery system for MSCs is urgently required. This new system can effectively extend the persistence and duration of MSCs in vivo. In this study, we present novel porous microspheres with microfluidic electrospray technology for the encapsulation of bone marrow-derived MSCs (BMSCs) in the treatment of liver cirrhosis. Porous microspheres loaded with BMSCs (Mi-BMSCs) exhibit good biocompatibility and demonstrate better anti-inflammatory properties than BMSCs alone. Mi-BMSCs significantly increase the duration of BMSCs and exert potent anti-inflammatory and anti-fibrosis effects against CCl4 and TAA-induced liver cirrhosis by targeting the TGF-ß/Smad signaling pathway to ameliorate cirrhosis, which highlight the potential of Mi-BMSCs as a promising therapeutic approach for early liver cirrhosis.

8.
Int J Biol Macromol ; 260(Pt 2): 129453, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253143

ABSTRACT

Diabetic wound therapy presents significant challenges in the clinical environment, where persistent bleeding, disturbed inflammatory regulation, impaired cellular proliferation, and impaired tissue remodeling are major features of diabetic wound healing. However, current treatment strategies need to be considered in the context of the dynamic and complex needs of chronic wound healing. Here, multifunctional dynamic boronic acid cross-linked hydrogels were prepared by the reaction of gelatin (Gel) inoculated with 5-carboxy 3-nitrophenylboronic acid (NPBA) and Epigallocatechin gallate (EGCG) to achieve rapid gelation at pH = 7.4, EGCG could interact electrostatically with cationic antimicrobial peptides (AMP) to achieve the effective loading of AMP in the hydrogels. This hydrogel can be injected and adhered to skin defects in diabetic patients to provide a barrier and rapid hemostasis. In a high glucose microenvironment, the rapid release of AMP effectively kills bacteria, while the responsive release of EGCG eliminates reactive oxygen species (ROS) and promotes macrophage M2 polarization. In addition, the hydrogel had excellent biocompatibility and degradability properties, degraded completely after 3 days of subcutaneous injection, and was non-toxic in H&E staining of major organs and serum liver function indices in mice. This multifunctional injectable hydrogel accelerates diabetic skin wound repair and is a promising dressing for the precise treatment of diabetic wounds.


Subject(s)
Diabetes Mellitus , Hydrogels , Humans , Animals , Mice , Hydrogels/pharmacology , Antioxidants/pharmacology , Gelatin , Skin , Anti-Inflammatory Agents , Anti-Bacterial Agents/pharmacology
9.
Adv Mater ; 36(18): e2308728, 2024 May.
Article in English | MEDLINE | ID: mdl-38241751

ABSTRACT

Manipulation of the gut microbiota using oral microecological preparations has shown great promise in treating various inflammatory disorders. However, delivering these preparations while maintaining their disease-site specificity, stability, and therapeutic efficacy is highly challenging due to the dynamic changes associated with pathological microenvironments in the gastrointestinal tract. Herein, a superior armored probiotic with an inflammation-targeting capacity is developed to enhance the efficacy and timely action of bacterial therapy against inflammatory bowel disease (IBD). The coating strategy exhibits suitability for diverse probiotic strains and has negligible influence on bacterial viability. This study demonstrates that these armored probiotics have ultraresistance to extreme intraluminal conditions and stable mucoadhesive capacity. Notably, the HA-functionalized nanoarmor equips the probiotics with inflamed-site targetability through multiple interactions, thus enhancing their efficacy in IBD therapy. Moreover, timely "awakening" of ingested probiotics through the responsive transferrin-directed degradation of the nanoarmor at the site of inflammation is highly beneficial for bacterial therapy, which requires the bacterial cells to be fully functional. Given its easy preparation and favorable biocompatibility, the developed single-cell coating approach provides an effective strategy for the advanced delivery of probiotics for biomedical applications at the cellular level.


Subject(s)
Inflammation , Probiotics , Animals , Mice , Humans , Inflammatory Bowel Diseases/therapy , Nanoparticles/chemistry , Transferrin/chemistry , Transferrin/metabolism , Gastrointestinal Microbiome
10.
Langmuir ; 40(4): 2005-2014, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38227800

ABSTRACT

Nowadays, natural materials as smart building blocks for assembling functional materials have aroused extensive interest in the scientific community. Proteins and polyphenols are typical natural building blocks that are widely used. On the one hand, proteins are one of the most versatile classes of biomolecules, serving as catalysts, signaling molecules, transporters, receptors, scaffolds that maintain the integrity of cell and tissue, and more. On the other hand, the facile adhesion of naturally abundant polyphenols with other substances and their potential biomedical applications have been highly attractive for functional biomaterials fabrication. Additionally, there are a variety of interactions between the proteins and polyphenols, mainly hydrogen bonding, hydrophobic, and ionic interactions. These reversible dynamic interactions enable proteins and polyphenols to form stable protein-polyphenol assemblies and maintain their inherent structures and biological activities in the assemblies. Therefore, protein-polyphenol assemblies can be applied to design a variety of advanced functional materials for biomedical applications. Herein, recent progress in protein-polyphenol particles, capsules, coatings, and hydrogels is summarized, the preparation and application of these assemblies are introduced in detail, and the future of the field is prospected.


Subject(s)
Polyphenols , Proteins , Polyphenols/chemistry , Proteins/chemistry , Biocompatible Materials/chemistry , Hydrogels/chemistry , Hydrogen Bonding
11.
Adv Healthc Mater ; 13(9): e2302286, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38056013

ABSTRACT

Spinal cord injury (SCI) commonly induces nerve damage and nerve cell degeneration. In this work, a novel dental pulp stem cells (DPSCs) encapsulated thermoresponsive injectable hydrogel with sustained hydrogen sulfide (H2S) delivery is demonstrated for SCI repair. For controlled and sustained H2S gas therapy, a clinically tested H2S donor (JK) loaded octysilane functionalized mesoporous silica nanoparticles (OMSNs) are incorporated into the thermosensitive hydrogel made from Pluronic F127 (PF-127). The JK-loaded functionalized MSNs (OMSF@JK) promote preferential M2-like polarization of macrophages and neuronal differentiation of DPSCs in vitro. OMSF@JK incorporated PF-127 injectable hydrogel (PF-OMSF@JK) has a soft consistency similar to that of the human spinal cord and thus, shows a high cytocompatibility with DPSCs. The cross-sectional micromorphology of the hydrogel shows a continuous porous structure. Last, the PF-OMSF@JK composite hydrogel considerably improves the in vivo SCI regeneration in Sprague-Dawley rats through a reduction in inflammation and neuronal differentiation of the incorporated stem cells as confirmed using western blotting and immunohistochemistry. The highly encouraging in vivo results prove that this novel design on hydrogel is a promising therapy for SCI regeneration with the potential for clinical translation.


Subject(s)
Hydrogels , Spinal Cord Injuries , Rats , Animals , Humans , Rats, Sprague-Dawley , Hydrogels/chemistry , Cross-Sectional Studies , Dental Pulp , Spinal Cord Injuries/drug therapy , Stem Cells , Spinal Cord
12.
ACS Macro Lett ; 13(1): 58-64, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38153092

ABSTRACT

The development of drug delivery systems with real-time cargo release monitoring capabilities is imperative for optimizing nanomedicine performance. Herein, we report an innovative self-reporting drug delivery platform based on a ROS-responsive random copolymer (P1) capable of visualizing cargo release kinetics via the activation of an integrated fluorophore. P1 was synthesized by copolymerization of pinacol boronate, PEG, and naphthalimide monomers to impart ROS-sensitivity, hydrophilicity, and fluorescence signaling, respectively. Detailed characterization verified that P1 self-assembles into 11 nm micelles with 10 µg mL-1 CMC and can encapsulate hydrophobic curcumin with 79% efficiency. Fluorescence assays demonstrated H2O2-triggered disassembly and curcumin release with concurrent polymer fluorescence turn-on. Both in vitro and in vivo studies validated the real-time visualization of drug release and ROS scavenging, as well as the therapeutic effect on osteoarthritis (OA). Overall, this nanotheranostic polymeric micelle system enables quantitative monitoring of drug release kinetics for enhanced treatment optimization across oxidative stress-related diseases.


Subject(s)
Curcumin , Osteoarthritis , Humans , Polymers , Reactive Oxygen Species , Curcumin/pharmacology , Drug Carriers/chemistry , Drug Liberation , Self Report , Hydrogen Peroxide , Drug Delivery Systems , Micelles , Osteoarthritis/drug therapy
13.
Adv Sci (Weinh) ; 11(9): e2305405, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38124471

ABSTRACT

Treating the most widespread complication of diabetes: diabetic wounds poses a significant clinical obstacle due to the intricate nature of wound healing in individuals with diabetes. Here a novel approach is proposed using easily applicable injectable gelatin/metal/tea polyphenol double nanonetworks, which effectively remodel the wound microenvironment and accelerates the healing process. The gelatin(Gel) crosslink with metal ions (Zr4+ ) through the amino acids, imparting advantageous mechanical properties like self-healing, injectability, and adhesion. The nanonetwork's biological functions are further enhanced by incorporating the tea polyphenol metal nanonetwork through in situ doping of the epigallocatechin gallate (EGCG) with great antibacterial, self-healing, antioxidant, and anticancer capabilities. The in vitro and in vivo tests show that this double nanonetworks hydrogel exhibits faster cell migration and favorable anti-inflammatory and antioxidant properties and can greatly reshape the microenvironment of diabetic wounds and accelerate the wound healing rate. In addition, this hydrogel is completely degraded after subcutaneous injection for 7 days, with nondetectable cytotoxicity in H&E staining of major mice organs and the serum level of liver function indicators. Considering the above-mentioned merits of this hydrogel, it is believed that the injectable gelatin/metal/tea polyphenol double nanonetworks have broad biomedical potential, especially in diabetic wound repair and tissue engineering.


Subject(s)
Diabetes Mellitus , Gelatin , Animals , Mice , Antioxidants , Hydrogels , Metals , Polyphenols , Wound Healing , Tea
14.
Mater Today Bio ; 23: 100873, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38149018

ABSTRACT

Lipiodol-based transcatheter arterial chemoembolization (TACE) is currently the predominant and first-line treatment option recommended by the global standard for unresectable hepatocellular carcinoma (HCC). However, the unstable emulsion of Lipiodol causes a substantial proportion of chemotherapy drugs to enter the circulation system, leading to poor accumulation in cancer tissues and unexpected side effects of chemotherapy drugs. Herein, we emulsified Lipiodol with a pH-sensitive drug delivery system assembled from hexahistidine and zinc ions (HmA) with a super-high loading capacity of doxorubicin (DOX) and a promising ability to penetrate bio-barriers for the effective treatment of HCC by TACE. In vitro tests showed that DOX@HmA was comparable to free DOX in killing HCC cells. Impressively, during the in vivo TACE treatment, the anti-tumor efficacy of DOX@HmA was significantly greater than that of free DOX, indicating that DOX@HmA increased the accumulation of DOX in tumor. Emulsifying Lipiodol with pH-sensitive DOX@HmA significantly inhibited cell regeneration and tumor angiogenesis and decreased the systemic side effects of chemotherapy, especially by suppressing pulmonary metastasis in liver VX2 tumors in rabbits by inhibiting epithelial-mesenchymal transition (EMT). Emulsifying tumor microenvironment-responsive drug delivery systems (DDSs) with Lipiodol could be a new strategy for clinical TACE chemotherapy with potentially enhanced HCC treatment.

15.
ACS Biomater Sci Eng ; 9(12): 6670-6682, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38019679

ABSTRACT

Orb-weaving spiders can use an array of specialized silks with diverse mechanical properties and functions for daily survival. Of all spider silk types, aciniform silk is the toughest silk fiber that combines high strength and elasticity. Although aciniform spidroins (AcSp) are the main protein in aciniform silks, their complete genes have rarely been characterized until now. Moreover, the structural and physical properties of AcSp variant proteins within the species are also unclear. Here, we present three full-length AcSp genes (named AcSp1A, AcSp1B, and AcSp2) from the orb-weaving spider Neoscona theisi and investigate the structural and mechanical features of these three AcSp repetitive domains. We demonstrate that all three AcSp proteins have mainly α-helical structural features in neutral solution and high thermal stability. Significantly, the AcSp2 repetitive domain shows a pH-dependent structural transition from α to ß conformations and can self-assemble into amyloid fibrils under acidic conditions, which is the first reported AcSp repetitive domain with pH-dependent self-assembly capacity. Compared with the other two AcSp spidroins, AcSp2 demonstrated the lowest expression level in the aciniform gland but had the highest strength for its silk fiber. Collectively, our findings provide new insight into the physical properties of each component of aciniform silk and expand the repertoire of known spidroin sequences for the synthesis of artificial silk materials.


Subject(s)
Fibroins , Silk/chemistry , Silk/genetics , Elasticity , Hydrogen-Ion Concentration
16.
Mater Today Bio ; 23: 100848, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38033370

ABSTRACT

Osseointegration is an important indicator of implant success. This process can be improved by coating modified bioactive molecules with multiple functions on the surface of implants. Herein, a simple multifunctional coating that could effectively improve osseointegration was prepared through layer-by-layer self-assembly of cationic amino acids and tannic acid (TA), a negatively charged molecule. Osteogenic growth peptide (OGP) and the arginine-glycine-aspartic acid (RGD) functional polypeptides were coupled with Lys6 (K6), the two polypeptides then self-assembled with TA layer by layer to form a composite film, (TA-OGP@RGD)n. The surface morphology and biomechanical properties of the coating were analyzed in gas and liquid phases, and the deposition process and kinetics of the two peptides onto TA were monitored using a quartz crystal microbalance. In addition, the feeding consistency and adsorption ratios of the two peptides were explored by using fluorescence visualization and quantification. The (TA-OGP@RGD)n composite membrane mediated the early migration and adhesion of cells and significantly promoted osteogenic differentiation and mineralization of the extracellular matrix in vitro. Additionally, the bifunctional peptide exhibited excellent osteogenesis and osseointegration owing to the synergistic effect of the OGP and RGD peptides in vivo. Simultaneously, the (TA-OGP@RGD)n membrane regulated the balance of reactive oxygen species in the cell growth environment, thereby influencing the complex biological process of osseointegration. Thus, the results of this study provide a novel perspective for constructing multifunctional coatings for implants and has considerable application potential in orthopedics and dentistry.

17.
Adv Sci (Weinh) ; 10(23): e2301771, 2023 08.
Article in English | MEDLINE | ID: mdl-37269054

ABSTRACT

Diabetes has been listed as one of the three major diseases that endanger human health. Accurately injecting insulin (Ins) depending on the level of blood glucose (LBG) is the standard treatment, especially controlling LBG in the long-term by a single injection. Herein, the pH-responsive hexa-histidine metal assembly (HmA) encapsulated with enzymes (GOx and CAT) and Ins (HmA@GCI) is engineered as the vehicle for glucose-mediated insulin delivery. HmA not only shows high proteins loading efficiency, but also well retained proteins activity and protect proteins from protease damage. Within HmA, the biocatalytic activities of enzymes and the efficiency of the cascade reaction between GOx and CAT are enhanced, leading to a super response to the change of LBG with insulin release and efficient clearance of harmful byproducts of GOx (H2 O2 ). In the treatment of diabetic mice, HmA@GCI reduces LBG to normal in half an hour and maintains for more than 5 days by a single subcutaneous injection, and nearly 24 days with four consecutive injections. During the test period, no symptoms of hypoglycemia and toxicity to tissues and organs are observed. These results indicate that HmA@GCI is a safe and long-acting hypoglycemic agent with prospective clinical application.


Subject(s)
Diabetes Mellitus, Experimental , Glucose , Humans , Mice , Animals , Glucose/metabolism , Histidine/therapeutic use , Insulin, Long-Acting/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Hexosaminidase A , Prospective Studies , Blood Glucose , Insulin , Metals , Hydrogen-Ion Concentration
18.
ACS Macro Lett ; 12(5): 639-645, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37129207

ABSTRACT

Due to the high reactivity of reactive oxygen species (ROS), it is essential to sweep them away in time. In this study, ClO--responsible amphiphilic brush polymers were prepared by free radical polymerization using two monomers consisting of polyethylene glycol as the hydrophilic part, and an alkyl chain connected by hydrazone as the hydrophobic part. The macromolecules assemble into particles with nanoscaled dimensions in a neutral buffer, which ensures quick cellular internalization. The polymer has a low critical micellization concentration and can encapsulate hydrophobic drug molecules up to 19% wt. The micelles formed by the polymer disassemble in a ClO--rich environment and release 80% of their cargo within 2 h, which possesses a faster release rate compared to the previous systems. The relatively small size and the quick response of hydrazone toward ClO- ensure a quick uptake and elimination of ROS in vitro and in vivo.


Subject(s)
Polyethylene Glycols , Polymers , Polymers/chemistry , Reactive Oxygen Species , Drug Liberation , Polyethylene Glycols/chemistry , Endocytosis
19.
Biomater Sci ; 11(10): 3726-3736, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37051634

ABSTRACT

The oral delivery of protein-based drugs is of great significance, but faces various obstacles, including the deactivation of proteins by the low pH in the stomach and the high concentration of protease, poor transport through intestinal bio-barriers, etc. Herein, we present an acid-resistant metal-organic framework (MOF), NU-1000, in which insulin (Ins, a model protein) was loaded with high capacity (Ins@NU-1000) through the pseudo second-order kinetic model and Langmuir isotherm model. Ins@NU-1000 protects Ins from deactivation in the stomach acid environment and releases it in the intestine through the transformation of the micro-sized rod particles into spherical nanoparticles. Interestingly, the rod particles exhibit long-term retention in the intestine, and Ins is efficiently transported by the shrunk nanoparticles through intestinal bio-barriers and released into the blood, resulting in significant oral hypoglycemic effects (lasting more than 16 h after a single oral administration). Our findings demonstrate that switching the physical properties of the delivery vehicle, such as the shape and size, can contribute to the success of oral protein administration.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Metal-Organic Frameworks/chemistry , Drug Delivery Systems/methods , Insulin , Nanoparticles/chemistry , Hypoglycemic Agents , Administration, Oral
20.
ACS Appl Mater Interfaces ; 15(16): 20551-20562, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37052959

ABSTRACT

Protein-based coatings are of immense interest due to their rich biological functions. Layer-by-layer (LbL) assembly, as a powerful means of transferring protein functions to the material surface, has received widespread attention. However, the assembly mechanism of protein-based LbL coatings is still far from being explained, not only because of protein structure and function diversity but also characterization limitations. Herein, we monitored in situ the LbL assembly process of tannic acid (TA) and lysozyme (Lyz), a classic pair of polyphenol and protein, by combining quartz crystal microbalance with dissipation monitoring (QCM-D) and spectroscopic ellipsometry (SE). The water content, morphology, mechanical properties, antioxidant activity, and the driving force of TA-Lyz coating engineered under different pH values were analyzed in detail by various techniques. The water content, a key factor in TA-Lyz coatings, increased with increasing assembled pH values, which resulted in a porous morphology, inhomogeneous mechanical distribution, faster assembly growth, and better antioxidant activity in both acellular and cellular levels. In addition, high water content is unfavorable to both entropy and enthalpy changes, and the thermodynamic driving force of TA and Lyz assembly mainly comes from the enthalpy change brought by the noncovalent interaction between TA and Lyz. These results provide new insights into engineering the structure, function, and assembly mechanisms of protein-based coatings.


Subject(s)
Antioxidants , Polyphenols , Tannins/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...