Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 610: 121181, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34653563

ABSTRACT

Ambrisentan (AMB) is an orphan drug approved for oral administration that has been developed for the treatment of pulmonary arterial hypertension (PAH), a chronic and progressive pathophysiological state that might result in death if left untreated. Lipid-core nanocapsules (LNCs) are versatile nanoformulations capable of loading lipophilic drugs for topical, vaginal, oral, intravenous, pulmonary, and nasal administration. Our hypothesis was to load AMB into these nanocapsules (LNCamb) and test their effect on slowing or reducing the progression of monocrotaline-induced PAH in a rat model, upon oral administration. LNCamb displayed a unimodal distribution of diameters (around 200 nm), negative zeta potential (-11.5 mV), high encapsulation efficiency (78%), spherical shape, and sustained drug release (50-60% in 24 h). The in vivo pharmacodynamic effect of the LNCamb group was evaluated by observing the echocardiography, hemodynamic, morphometric, and histological data, which showed a significant decrease in PAH in this group, as compared to the control group (AMBsolution). LNCamb showed the benefit of reversing systolic dysfunction and preventing vascular remodeling with greater efficacy than that observed in the control group. The originality and contribution of our work reveal the promising value of this nanoformulation as a novel therapeutic strategy for PAH treatment.


Subject(s)
Hypertension, Pulmonary , Nanocapsules , Pulmonary Arterial Hypertension , Animals , Female , Hypertension, Pulmonary/drug therapy , Lipids , Nanocapsules/therapeutic use , Phenylpropionates , Pyridazines , Rats
2.
ACS Nano ; 15(2): 3061-3069, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33523648

ABSTRACT

Global warming and sea level rise are serious threats to agriculture. The negative effects caused by severe salinity include discoloration and reduced surface of the leaves, as well as wilting due to an impaired uptake of water from the soil by roots. Nanotechnology is emerging as a valuable ally in agriculture: several studies have indeed already proven the role of silicon nanoparticles in ameliorating the conditions of plants subjected to (a) biotic stressors. Here, we introduce the concept of phyto-courier: hydrolyzable nanoparticles of porous silicon, stabilized with the nonreducing saccharide trehalose and containing different combinations of lipids and/or amino acids, were used as vehicle for the delivery of the bioactive compound quercetin to the leaves of salt-stressed hemp (Cannabis sativa L., Santhica 27). Hemp was used as a representative model of an economically important crop with multiple uses. Quercetin is an antioxidant known to scavenge reactive oxygen species in cells. Four different silicon-based formulations were administered via spraying in order to investigate their ability to improve the plant's stress response, thereby acting as nano-biostimulants. We show that two formulations proved to be effective at decreasing stress symptoms by modulating the amount of soluble sugars and the expression of genes that are markers of stress-response in hemp. The study proves the suitability of the phyto-courier technology for agricultural applications aimed at crop protection.


Subject(s)
Cannabis , Salinity , Antioxidants , Plant Leaves , Silicon
SELECTION OF CITATIONS
SEARCH DETAIL