Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 18(1): 110-8, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26473180

ABSTRACT

The real time dynamics of electronic predissociation of the CH3 radical (and its deuterated variant CD3) from selected vibrational states of the 3pz Rydberg state have been measured for the first time using a novel methodology based on a femtosecond three-color experiment to generate, two-photon excite and ionize methyl radicals as a function of time in combination with velocity map imaging detection. Subpicosecond lifetimes have been measured, showing a decreasing trend as vibrational excitation in the symmetric stretch and bending umbrella modes increases for both species. High-level ab initio calculations have been carried out in order to elucidate the CH3 3pz predissociation mechanism and support the lifetime measurements. The observed lifetimes are relevant for the understanding of the resonance enhanced multiphoton ionization spectroscopy of this radical.

2.
J Chem Phys ; 132(3): 034301, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20095733

ABSTRACT

A global potential energy surface is obtained for the ground state of the endoergic Au((2)S)+H(2)(X (1)Sigma(g) (+))-->AuH((1)Sigma(+))+H((2)S) reaction. The global potential is obtained by fitting highly correlated ab initio calculations on the system, using relativistic pseudopotential for the gold atom. Several electronic states are calculated correlating with Au((2)S)+H(2), Au((2)D)+H(2), and H(2), Au((2)P)+H(2) asymptotes. These states show several conical intersections and curve crossings along the minimum energy reaction path which are analyzed in detail. One of them gives rise to an insertion well in which there are important contributions from the Au((2)D) and Au((2)P) states of gold, which is interesting because it is analog to the deep chemisorption well appearing in larger gold clusters. Quantum wave packet and quasiclassical trajectory dynamical calculations performed for the reaction at zero total angular momentum are in good agreement, provided that a Gaussian binning method is used to account for the zero-point energy of products. Finally, integral and differential cross sections are calculated for the reaction with quasiclassical trajectories. Two different reaction mechanisms are found, one direct and the second indirect, in which the Au atom inserts in between the two hydrogen atoms because of the existence of the insertion well discussed above.

SELECTION OF CITATIONS
SEARCH DETAIL
...