Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(17): 13432-13440, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647242

ABSTRACT

The HF molecule is considered the main reservoir of fluorine in the interstellar medium (ISM). Also, the interactions of this molecule with the most common atoms and molecules in the ISM have attracted great interest from the astrochemical community. Collisions between HF and helium have recently caused controversy following a study using a two-dimensional SAPT potential energy surface (PES) that exhibited large discrepancies with previous scattering calculations based on more recent ab initio potentials. To address this issue, our current work aims to develop the most precise three-dimensional PES for the HF+He system. We employ the size-consistent CCSD(T) method in conjunction with the aug-cc-pV6Z basis set. The main features of the new PES as well as the bound states of the He-HF complex are compared to the existing data. The new PES is then utilised to conduct close coupling calculations that demonstrate He-HF as a good instance of vibration-rotation near resonant energy transfer. The novel rate coefficients will be accessible via the BASECOL database, and the use of the new PES is advised when describing HF in helium droplets.

2.
J Chem Phys ; 159(6)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37555612

ABSTRACT

The photodissociation dynamics leading to the C-N bond cleavage in methylamine (CH3NH2) are investigated upon photoexcitation in the blue edge of the first absorption A-band, in the 198-204 nm range. Velocity map images of the generated methyl (CH3) fragment detected in specific vibrational modes, i.e., ν = 0, ν1 = 1, and ν2 = 1, through resonance enhanced multiphoton ionization, are presented along with the corresponding translational energy distributions and the angular analysis. The experimental results are complemented by high-level ab initio calculations of potential energy curves as a function of the C-N bond distance. While a similar single Boltzmann-type contribution is observed in all the translational energy distributions measured, the speed-dependent anisotropy parameter obtained through the angular analysis reveals the presence of two different mechanisms. Prompt dissociation through the conical intersection between the Ã1A' first excited state and the ground state located in the exit channel is, indeed, revealed as a minor channel. In contrast, slow dissociation on the ground state, presumably from frustrated N-H bond cleavage trajectories, constitutes the major reaction pathway leading to the methyl formation.

3.
Chemphyschem ; 24(15): e202300291, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37326130

ABSTRACT

The (H 2 ${{}_{2}}$ CO) 2 ${{}_{2}}$ +OH and H 2 ${{}_{2}}$ CO-OH+H 2 ${{}_{2}}$ CO reaction dynamics are studied theoretically for temperatures below 300 K. For this purpose, a full dimension potential energy surface is built, which reproduces well accurate ab initio calculations. The potential presents a submerged reaction barrier, as an example of the catalytic effect induced by the presence of the third molecule. However, quasi-classical and ring polymer molecular dynamics calculations show that the dominant channel is the dimer-exchange mechanism below 200 K, and that the reactive rate constant tends to stabilize at low temperatures, because the effective dipole of either dimer is reduced with respect to that of formaldehyde alone. The reaction complex formed at low temperatures does not live long enough to produce complete energy relaxation, as assumed in statistical theories. These results show that the reactivity of the dimers cannot explain the large rate constants measured at temperatures below 100 K.

4.
J Chem Phys ; 158(23)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37326159

ABSTRACT

The photodissociation dynamics of methylamine (CH3NH2) upon excitation in the blue edge of the first absorption A-band, in the 198-203 nm range, are investigated by means of nanosecond pump-probe laser pulses and velocity map imaging combined with H(2S)-atom detection through resonance enhanced multiphoton ionization. The images and corresponding translational energy distributions for the H-atoms produced show three different contributions associated with three reaction pathways. The experimental results are complemented by high-level ab initio calculations. The potential energy curves computed as a function of the N-H and C-H bond distances allow us to draw a picture of the different mechanisms. Major dissociation occurs through N-H bond cleavage and it is triggered by an initial geometrical change, i.e., from a pyramidal configuration of the C-NH2 with respect to the N atom to a planar geometry. The molecule is then driven into a conical intersection (CI) seam where three outcomes can take place: first, threshold dissociation into the second dissociation limit, associated with the formation of CH3NH(Ã), is observed; second, direct dissociation after passage through the CI leading to the formation of ground state products; and third, internal conversion into the ground state well in advance to dissociation. While the two last pathways were previously reported at a variety of wavelengths in the 203-240 nm range, the former had not been observed before to the best of our knowledge. The role of the CI and the presence of an exit barrier in the excited state, which modify the dynamics leading the two last mechanisms, are discussed considering the different excitation energies used.


Subject(s)
Light , Methylamines
5.
Chemistry ; 29(49): e202301517, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37204268

ABSTRACT

Sub-nanometer metal clusters have special physical and chemical properties, significantly different from those of nanoparticles. However, there is a major concern about their thermal stability and susceptibility to oxidation. In situ X-ray Absorption spectroscopy and Near Ambient Pressure X-ray Photoelectron spectroscopy results reveal that supported Cu5 clusters are resistant to irreversible oxidation at least up to 773 K, even in the presence of 0.15 mbar of oxygen. These experimental findings can be formally described by a theoretical model which combines dispersion-corrected DFT and first principles thermochemistry revealing that most of the adsorbed O2 molecules are transformed into superoxo and peroxo species by an interplay of collective charge transfer within the network of Cu atoms and large amplitude "breathing" motions. A chemical phase diagram for Cu oxidation states of the Cu5 -oxygen system is presented, clearly different from the already known bulk and nano-structured chemistry of Cu.

6.
Phys Chem Chem Phys ; 25(16): 11684-11696, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37057377

ABSTRACT

The site-specific hydrogen-atom elimination mechanism previously reported for photoexcited ethyl radicals (CH3CH2) [D. V. Chicharro et al., Chem. Sci., 2019, 10, 6494] is interrogated in the photodissociation of the ethyl isotopologues CD3CD2, CH3CD2 and CD3CH2 through the velocity map imaging (VMI) detection of the produced hydrogen- and deuterium-atoms. The radicals, generated in situ from photolysis of a precursor using the same laser pulse employed in their excitation to Rydberg states, decompose along the Cα-H/D and Cß-H/D reaction coordinates through coexisting statistical and site-specific mechanisms. The experiments are carried out at two excitation wavelengths, 201 and 193 nm. The comparison between both sets of results provides accurate information regarding the primary role in the site-specific mechanism of the radical internal reservoir. Importantly, at 193 nm excitation, higher energy dissociation channels (not observed at 201 nm) producing low-recoil H/D-atoms become accessible. High-level ab initio calculations of potential energy curves and the corresponding non-adiabatic interactions allow us to rationalize the experimental results in terms of competitive non-adiabatic decomposition paths. Finally, the adiabatic behavior of the conical intersections in the face of several vibrational modes - the so-called vibrational promoting modes - is discussed.

7.
J Phys Chem A ; 126(45): 8404-8422, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36322967

ABSTRACT

The photodissociation dynamics and photofragment alignment of bromoiodomethane (CH2BrI) have been studied at 193 nm using a double experimental and theoretical approach. In addition, the ultraviolet (UV)-vacuum ultraviolet (VUV) absorption spectrum of gas phase CH2BrI has been measured in the photon energy range of 5-11 eV using the VUV Fourier transform spectrometer (FTS) at the VUV beamline DESIRS of the synchrotron SOLEIL facility. The slice imaging technique in combination with resonance enhanced multiphoton ionization (REMPI) detection of the Br(2PJ) and I(2PJ) (with J = 3/2 and 1/2 for Br/I and Br*/I*, respectively) atomic photofragments have been used to produce experimental translational energy and angular distributions, which were analyzed to deliver, on one hand, the partitioning of the available energy among the different degrees-of-freedom of the photofragments and, on the other, the photofragment polarization in terms of aqk(p) alignment parameters. The experimental measurements were rationalized in terms of high-level ab initio calculations of vertical excitation energies, transition dipole moments and potential energy curves (PECs) along different reaction coordinates to provide a complete picture of the photodissociation dynamics. The results indicate that for excitation at 193 nm, prompt C-X cleavage (with X being either halogen atom, Br or I) competes with fast internal conversion and consequent stochastic dissociation in lower electronic states. In the case of the CH2Br + I(2P3/2)/I*(2P1/2) channels, the dynamics are greatly biased toward the stochastic dissociation process due to both the particular PECs landscape and the unfavored excitation of the CH2BrI ensemble with respect to the C-I molecular axis at this excitation energy. The ab initio PECs provide a tentative path for the fast dissociation process in either case. For the C-Br bond breakage, excitation to the 13A' electronic state and predissociation through the 11A'/11A″ or 12A'/12A″ states, leading to direct dissociation through the 10A'/9A″ states, appear as the most consistent dynamics. For the C-I channel, predissociation does not become a reliable possibility and a fast internal conversion may precede dissociation through the repulsive 6A'/6A″ and 4A'/4A″ states. The large content of rotational and vibrational excitation of the polyatomic cofragments is justified through the soft impulsive model and the geometrical changes produced along the dissociation pathway. Strikingly, the aqk(p) alignment parameters obtained for the Br(2P3/2) and I(2P3/2) photoproducts indicate that the rotational angular momentum of the CH2X (X = I or Br) cofragment appears highly constrained along the recoil direction. Finally, this work presents a highly plausible explanation for the branching ratio of secondary dissociation processes in the photodynamics of CH2BrI at 193 nm.

8.
J Phys Chem A ; 125(41): 9143-9150, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34633823

ABSTRACT

The electronic structure of subnanometric clusters, far off the bulk regime, is still dominated by molecular characteristics. The spatial arrangement of the notoriously undercoordinated metal atoms is strongly coupled to the electronic properties of the system, which makes this class of materials particularly interesting for applications including luminescence, sensing, bioimaging, theranostics, energy conversion, catalysis, and photocatalysis. Opposing a common rule of thumb that assumes an increasing chemical reactivity with smaller cluster size, Cu5 clusters have proven to be exceptionally resistant to irreversible oxidation, i.e., the dissociative chemisorption of molecular oxygen. Besides providing reasons for this behavior in the case of heavy loading with molecular oxygen, we investigate the competition between physisorption and molecular chemisorption from the perspective of nonadiabatic effects. Landau-Zener theory is applied to the Cu5(O2)3 complex to estimate the probability for a switching between the electronic states correlating the neutral O2 + Cu5(O2)2 and the ionic O2- + (Cu5(O2)2)+ fragments in a diabatic representation. Our work demonstrates the involvement of strong nonadiabatic effects in the associated charge transfer process, which might be a common motive in reactions involving subnanometric metal structures.

9.
J Phys Chem A ; 125(28): 6122-6130, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34232644

ABSTRACT

VUV photoionization of the CHnI radicals (with n = 0, 1, and 2) is investigated by means of synchrotron radiation coupled with a double imaging photoion-photoelectron coincidence spectrometer. Photoionization efficiencies and threshold photoelectron spectra (TPES) for photon energies ranging between 9.2 and 12.0 eV are reported. An adiabatic ionization energy (AIE) of 8.334 ± 0.005 eV is obtained for CH2I, which is in good agreement with previous results [8.333 ± 0.015 eV, Sztáray J. Chem. Phys. 2017, 147, 013944], while for CI an AIE of 8.374 ± 0.005 eV is measured for the first time and a value of ∼8.8 eV is estimated for CHI. Ab initio calculations have been carried out for the ground state of the CH2I radical and for the ground state and excited states of the radical cation CH2I+, including potential energy curves along the C-I coordinate. Franck-Condon factors are calculated for transitions from the CH2I(X̃2B1) ground state of the neutral radical to the ground state and excited states of the radical cation. The TPES measured for the CH2I radical shows several structures that correspond to the photoionization into excited states of the radical cation and are fully assigned on the basis of the calculations. The TPES obtained for the CHI is characterized by a broad structure peaking at 9.335 eV, which could be due to the photoionization from both the singlet and the triplet states and into one or more electronic states of the cation. A vibrational progression is clearly observed in the TPES for the CI radical and a frequency for the C-I stretching mode of 760 ± 60 cm-1 characterizing the CI+ electronic ground state has been extracted.

10.
Phys Chem Chem Phys ; 23(3): 2458-2468, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33463638

ABSTRACT

A prompt site-specific hydrogen-atom elimination from the α-carbon atom (Cα) has been recently reported to occur in the photodissociation of ethyl radicals following excitation at 201 nm [Chicharro et al., Chem. Sci., 2019, 10, 6494]. Such pathway was accessed by means of an initial ro-vibrational energy characterizing the radicals produced by in situ photolysis of a precursor. Here, we present experimental evidence of a similar dynamics in a series of alkyl radicals (C2H5, n-C3H7, n-C4H9, and i-C3H7) containing the same reaction coordinate, but different extended structures. The main requirements for the site-specific mechanism in the studied radicals, namely a rather high content of internal energy prior to dissociation and the participation of vibrational promoting modes, is discussed in terms of the chemical structure of the radicals. The methyl deformation mode in all alkyl radicals along with the CH bending motion in i-C3H7 appear to promote this fast H-atom elimination channel. The photodissociation dynamics of the simplest unsaturated alkyl radical, the vinyl radical (C2H3), is also discussed, showing no signal of site-specific fast H-atom elimination. The results are complemented with high-level ab initio electronic structure calculations of potential energy curves of the vinyl radical, which are compared with those previously reported for the ethyl radical.

11.
Chemistry ; 27(5): 1700-1712, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-32975323

ABSTRACT

Despite being a very strong oxidizing agent, most organic molecules are not oxidized in the presence of O2 at room temperature because O2 is a diradical whereas most organic molecules are closed-shell. Oxidation then requires a change in the spin state of the system, which is forbidden according to non-relativistic quantum theory. To overcome this limitation, oxygenases usually rely on metal or redox cofactors to catalyze the incorporation of, at least, one oxygen atom into an organic substrate. However, some oxygenases do not require any cofactor, and the detailed mechanism followed by these enzymes remains elusive. To fill this gap, here the mechanism for the enzymatic cofactor-independent oxidation of 3,5-dihydroxyphenylacetyl-CoA (DPA-CoA) is studied by combining multireference calculations on a model system with QM/MM calculations. Our results reveal that intersystem crossing takes place without requiring the previous protonation of molecular oxygen. The characterization of the electronic states reveals that electron transfer is concomitant with the triplet-singlet transition. The enzyme plays a passive role in promoting the intersystem crossing, although spontaneous reorganization of the water wire connecting the active site with the bulk presets the substrate for subsequent chemical transformations. The results show that the stabilization of the singlet radical-pair between dioxygen and enolate is enough to promote spin-forbidden reaction without the need for neither metal cofactors nor basic residues in the active site.


Subject(s)
Biocatalysis , Coenzyme A/chemistry , Coenzyme A/metabolism , Oxygenases/metabolism , Electron Transport , Oxygenases/chemistry , Quantum Theory
12.
Phys Chem Chem Phys ; 22(30): 17091-17105, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32685952

ABSTRACT

We present the dynamics of the electronic quenching OH(A2Σ+) + Kr(1S) → OH(X2Π) + Kr(1S), with OH(A2Σ+) in the ground ro-vibrational state. This study relies on a new non-adiabatic quantum theory that uses three diabatic electronic states Σ+, Π', and Π'', coupled by one conical-intersection and nine Renner-Teller matrix elements, all of which are explicitly considered in the equation of the motion. The time-dependent mechanism and initial-state-resolved quenching probabilities, integral cross sections, thermal rate constants, and thermally-averaged cross sections are calculated via the real wavepacket method. The results point out a competition among three non-adiabatic pathways: Σ+ ↔ Π', Σ+ ↔ Π'', and Π' ↔ Π''. In particular, the conical-intersection effects Σ+-Π' are more important than the Renner-Teller couplings Σ+-Π', Σ+-Π'', and Π'-Π''. Therefore, Π' is the preferred product channel. The quenching occurs via an indirect insertion mechanism, opening many collision complexes, and the probabilities thus present many oscillations. Some resonances are still observable in the cross sections, which are in good agreement with previous experimental and quasi-classical findings. We also discuss the validity of more approximate quantum methods.

13.
Sci Rep ; 10(1): 6700, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32317645

ABSTRACT

The correlation between chemical structure and predissociation dynamics has been evaluated for a series of linear and branched alkyl iodides with increasing structural complexity by means of femtosecond time-resolved velocity map imaging experiments following excitation on the second absorption band (B-band) at around 201 nm. The time-resolved images for the iodine fragment are reported and analyzed in order to extract electronic predissociation lifetimes and the temporal evolution of the anisotropy while the experimental results are supported by ab initio calculations of the potential energy curves as a function of the C-I distance. Remarkable similarities are observed for all molecules consistent with a major predissociation of the initially populated bound Rydberg states 6A″ and 7A' through a crossing with the purely repulsive states 7A″, 8A' and 8A″ leading to a major R + I*(2P1/2) (R = CH3, C2H5, n-C3H7, n-C4H9, i-C3H7 and t-C4H9) dissociation channel. The reported electronic predissociation lifetimes are found to decrease for an increasing size of the linear radical, reflecting the shifts observed in the position of the crossings in the potential energy curves, and very likely a greater non-adiabatic coupling between the initially populated Rydberg states and the repulsive states leading to dissociation induced by other coordinates associated to key vibrational normal modes. The loss of anisotropy is fully accounted for by the parent molecular rotation during predissociation and the rotational temperature of the parent molecule in the molecular beam is reasonably derived.

14.
Phys Chem Chem Phys ; 22(23): 12886-12893, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32315003

ABSTRACT

The valence-shell photoionization of formaldehyde is investigated by means of combining Photo-Electron Photo-Ion COincidence (PEPICO) experiments and ab initio calculations. The formation of three ion fragments: HCO+, CO+ and H, via dissociative photoionization following excitation at 17 eV is discussed. The experimental results consisting of electron-ion kinetic energy correlation diagrams for the corresponding coincident events, i.e. (HCO+, e-), (CO+, e-) and (H, e-), as well as the fragment abundance as a function of the binding energy, are complemented by high level electronic structure calculations including potential energy curves and on-the-fly trajectories. The results are consistent with a main relaxation process via internal conversion into rovibrationally excited levels of the H2CO+ ground state, followed by statistical dissociation, preferentially into HCO+. The analysis of the experimental results reveals nevertheless the signature of a conical intersection controlling the dynamics and favoring dissociation into the molecular channel, CO+ + H2. In addition, the minor formation of the H ion is suggested to occur through a roaming pathway on the cation excited state.

15.
Phys Chem Chem Phys ; 21(41): 23017-23025, 2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31599893

ABSTRACT

The photodissociation dynamics of the ethyl radical following excitation into the 3s and 3p Rydberg states are revisited in a joint experimental and theoretical study. Two different methods to produce the ethyl radical, pyrolysis and in situ photolysis, are employed in order to modify the initial ro-vibrational energy distribution characterizing the ethyl radical beam. H-atom velocity map images following excitation of the radical at 243 nm and at 201 nm are presented and discussed along with ab initio potential energy curves focussing on the bridged C2v geometry. The reported results show that the dynamics following excitation to the 3s Rydberg state is insensitive to the initial internal energy of the parent radical, in contrast to the dynamics on the 3p Rydberg state, which is strongly modified. The role of the bridged C2v geometry on both photodynamics is highlighted and discussed.

16.
J Chem Phys ; 151(9): 094307, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31492055

ABSTRACT

This paper presents two new adiabatic, global potential energy surfaces (PESs) for the two lowest 3A' and 3A″ electronic states of the O(3P) + H2 system. For each of these states, ab initio electronic energies were calculated for more than 5000 geometries using internally contracted multireference configuration interaction methods. The calculated points were then fitted using the ansatz by Aguado et al. [Comput. Phys. Commun. 108, 259 (1998)] leading to very accurate analytical potentials well adapted to perform reaction dynamics studies. Overall, the topographies of both PESs are in good agreement with the benchmark potentials of Rogers et al. [J. Phys. Chem. A 104, 2308 (2000)], but those presented in this work reproduce better the height and degeneracy of the two states at the saddle point. Moreover, the long range potential in the entrance channel does not require any cutoff. These features make the new PESs particularly suitable for a comparison of the dynamics on each of them. The new set of PESs was then used to perform quantum mechanics and quasiclassical trajectory calculations to determine differential and integral cross sections, which are compared to the experimental measurements by Garton et al. [J. Chem. Phys. 118, 1585 (2003)].

17.
Chem Sci ; 10(26): 6494-6502, 2019 Jul 14.
Article in English | MEDLINE | ID: mdl-31341601

ABSTRACT

The photochemistry of the ethyl radical following excitation to the 3p Rydberg state is investigated in a joint experimental and theoretical study. Velocity map images for hydrogen atoms detected from photoexcited isotopologues CH3CH2, CH3CD2 and CD3CH2 at ∼201 nm, are discussed along with high-level ab initio electronic structure calculations of potential energy curves and non-adiabatic coupling matrix elements (NACME). A novel mechanism governed by a conical intersection allowing prompt site-specific hydrogen-atom elimination is presented and discussed. For this mechanism to occur, an initial ro-vibrational excitation is allocated to the radical permitting to access this reaction pathway and thus to control the ethyl photochemistry. While hydrogen-atom elimination from cold ethyl radicals occurs through internal conversion into lower electronic states followed by slow statistical dissociation, prompt site-specific Cα elimination into CH3CH + H, occurring through a fast non-adiabatic crossing to a valence bound state followed by dissociation through a conical intersection, is accessed by means of an initial ro-vibrational energy content into the radical. The role of a particularly effective vibrational promoting mode in this prompt photochemical reaction pathway is discussed.

18.
J Phys Chem C Nanomater Interfaces ; 123(44): 27064-27072, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-33101568

ABSTRACT

An ab initio study of the interaction of O2, the most abundant radical and oxidant species in the atmosphere, with a Cu5 cluster, a new generation atomic metal catalyst, is presented. The open-shell nature of the reactant species is properly accounted for by using the multireference perturbation theory, allowing the experimentally confirmed resistivity of Cu5 clusters toward oxidation to be investigated. Approximate reaction pathways for the transition from physisorption to chemisorption are calculated for the interaction of O2 with quasi-iso-energetic trapezoidal planar and trigonal bipyramidal structures. Within the multireference approach, the transition barrier for O2 activation can be interpreted as an avoided crossing between adiabatic states (neutral and ionic), which provides new insights into the charge-transfer process and gives better estimates for this hard to localize and therefore often neglected first intermediate state. For Cu5 arranged in a bipyramidal structure, the O-O bond cleavage is confirmed as the rate-determining step. However, for planar Cu5, the high energy barrier for O2 activation, related to a very pronounced avoided crossing when going from physisorption to chemisorption, determines the reactivity in this case.

19.
Phys Chem Chem Phys ; 20(40): 25951-25958, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30294740

ABSTRACT

Is the rise of the rate constant measured in laval expansion experiments of OH with organic molecules at low temperatures due to the reaction between the reactants or due to the formation of complexes with the buffer gas? This question has importance for understanding the evolution of prebiotic molecules observed in different astrophysical objects. Among these molecules methanol is one of the most widely observed, and its reaction with OH has been studied by several groups showing a fast increase in the rate constant under 100 K. Transition state theory doesn't reproduce this behavior and here dynamical calculations are performed on a new full dimensional potential energy surface developed for this purpose. The calculated classical reactive cross sections show an increase at low collision energies due to a complex forming mechanism. However, the calculated rate constant at temperatures below 100 K remains lower than the observed one. Quantum effects are likely responsible for the measured behavior at low temperatures.

20.
Astrophys J ; 862(1)2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30190625

ABSTRACT

The presence of SiS in space seems to be restricted to a few selected types of astronomical environments. It is long known to be present in circumstellar envelopes around evolved stars and it has also been detected in a handful of star-forming regions with evidence of outflows, like Sgr B2, Orion KL and more recently L1157-B1. The kinetics of reactions involving SiS is very poorly known and here we revisit the chemistry of SiS in space by studying some potentially important reactions of formation and destruction of this molecule. We calculated ab initio potential energy surfaces of the SiOS system and computed rate coefficients in the temperature range 50-2500 K for the reaction of destruction of SiS, in collisions with atomic O, and of its formation, through the reaction between Si and SO. We find that both reactions are rapid, with rate coefficients of a few times 10-10 cm3 s-1, almost independent of temperature. In the reaction between Si and SO, SiO production is 5-7 times more efficient than SiS formation. The reaction of SiS with O atoms can play an important role in destroying SiS in envelopes around evolved stars. We built a simple chemical model of a postshock gas to study the chemistry of SiS in protostellar outflows and we found that SiS forms with a lower abundance and later than SiO, that SiS is efficiently destroyed through reaction with O, and that the main SiS-forming reactions are Si + SO and Si + SO2.

SELECTION OF CITATIONS
SEARCH DETAIL
...