Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 424: 136401, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37229899

ABSTRACT

A capacity to determine the provenance of high-value food products is of high scientific and economic interest. With the aim to develop a tool for geographical traceability of Croatian extra virgin olive oils (EVOO), multielement composition and 13C/12C isotope ratio in EVOO as well as the geochemistry of the associated soils were analysed in samples collected from three regions along the Croatian Adriatic coast. Soil geochemistry was shown to influence the transfer and elemental composition of EVOO. The most discriminating variables to distinguish EVOO from different regions were S, Mo, Rb, Mg, Pb, Mn, Sn, K, V and δ13C. The predictive models achieved high sensitivity and specificity, especially when carbon isotope composition was added. The results suggest that interregional geographical traceability of Croatian EVOO is possible based on matching their multielement composition with that of the soils in the provenance area.


Subject(s)
Chemometrics , Soil , Olive Oil/chemistry , Carbon Isotopes/analysis , Croatia , Plant Oils/analysis
2.
Foods ; 11(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36141049

ABSTRACT

The influence of different irrigation regimes on olive fruit morphological parameters and on the quantity and quality (marketable indices, phenolic content, fatty acid composition, and sensory profile) of virgin olive oil (VOO) obtained from the Croatian cultivar Oblica, grown on an extremely rocky and dry reclaimed karst soil, was studied over three years. Four treatments were applied: rain-fed and three treatments calculated as 50%, 75%, and 100% of the crop's irrigation requirement (Irr). Principal component analysis separated growing seasons (GS) that differed in precipitation. In the 2016 season, which had a low number of fruits per kilogram and provided a higher amount of balanced VOO with medium to intense bitterness and pungency (rain-fed treatment), the oil yield increased by irrigation (Irr 75 and Irr 100) up to 18%, while unchanged phenolics, bitterness, and pungency were observed for the VOOs obtained. In the drier GS (2017), which under rain-fed conditions had high fruit per kg, smallest fruit sizes, and lowest oil yield, and in which the VOOs had high phenolic content and intense sensory taste attributes, fruit weight, fruit sizes, and oil yield increased by 35% in all irrigation treatments, while phenols, bitterness, and pungency decreased, balancing the sensory profile of the VOOs. The results obtained here led us to conclude that the irrigation of young olives resulted in a positive effect, with the indication that an abundant water supply is more effective in drought conditions.

3.
Antioxidants (Basel) ; 11(3)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35326244

ABSTRACT

A single phenolic group and even a compound play different roles in the sensory properties and stability of virgin olive oil (VOO), which in turn are strongly influenced by several factors. Understanding the causes of differences in phenolic compound composition and oxidative stability (OS) in VOOs is essential for targeted and timely harvest and processing while maintaining desired oil quality. The phenolic profile and OS of two monocultivar VOOs (Oblica and Leccino) grown in two geographical sites of different altitudes (coastal plain and hilly hinterland) were analyzed throughout the ripening period over two years. Concentration of secoiridoids was 30% higher in the Oblica than in the Leccino VOOs, which in turn had significantly higher values of OS. Both cultivars had more than twice as high concentrations of the two most abundant phenolic compounds, the dialdehyde form of decarboxymethyl oleuropein aglycone and the dialdehyde form of decarboxymethyl ligstroside aglycone, and OS values in a colder growing site of higher altitude. Among the studied monocultivar VOOs, the secoiridoid group did not behave equally during ripening. The hierarchy of different influencing factors was investigated using multivariate statistics and revealed: cultivar > geographical site > harvest period > growing season. In addition, the possibility of traceability of VOO using molecular markers was investigated by establishing SSR profiles of oils of the studied cultivars and comparing them with SSR profiles of leaves.

4.
Plants (Basel) ; 10(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34685804

ABSTRACT

Volatile compounds are chemical species responsible for the distinctive aroma of virgin olive oil. Monovarietal olive oils have a peculiar composition of volatiles, some of which are varietal descriptors. In this paper, the total phenolic content (TPC), fatty acid composition, volatile compounds, and sensory profile of monovarietal olive oils from four Dalmatian most common olive cultivars-Oblica, Lastovka, Levantinka, and Krvavica-were studied. The volatile composition of olive oils was analyzed using headspace solid-phase microextraction with gas chromatography/mass spectrometry. The highest mean TPC value was measured in Oblica and Krvavica oils (around 438 mg/kg). The difference among cultivars for fatty acids composition was detected for C16:1, C17:0, C18:1, C18:2, and the ratio C18:1/C18:2. Krvavica oils showed clear differences in fatty acid composition compared to oils from other cultivars. The most prevalent volatile compound in all oils was C6 aldehyde E-2-hexenal, with the highest value detected in Levantinka oils (75.89%), followed by Lastovka (55.27%) and Oblica (54.86%). Oblica oils had the highest value of Z-3-hexen-1-ol, which influenced its characteristic banana fruitiness, detected only in this oil. Lastovka oils had the highest amount of several volatiles (heptanal, Z-2-heptenal, hexanal, hexyl acetate), with a unique woody sensation and the highest astringency among all studied cultivars. Levantinka oils had the highest level of almond fruitiness, while Krvavica oils had the highest level of grass fruitiness.

5.
Antioxidants (Basel) ; 10(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925722

ABSTRACT

The authenticity and typicity of monocultivar oils and knowledge of the changes that environmental olive growing conditions bring to naturally present antioxidants and sensory attributes of virgin olive oils (VOO) are important for quality and safety improvement. This study delivers a comprehensive evaluation of the factors affecting phenolics, fatty acid composition and sensory characteristics of cultivars Oblica and Leccino VOOs throughout ripening season at two distinct olive growing environments during three consecutive crop years, and ranks the importance of each factor. Specified parameters were significantly influenced by olive growing environmental conditions. At the colder location of higher altitude, both cultivars gained higher amount of stearic, linoleic and linolenic fatty acids, as well as a higher proportion of phenolic compounds, but lower amounts of oleic fatty acid. At the warmer location of lower altitude, both cultivars had oils with lower level of fruitiness, bitterness and pungency. Analysis of the main components showed that VOOs were primarily differentiated by the cultivar, then main groups were divided with regard to the growing site, while harvest period affected the biosynthesis of natural VOOs antioxidants but had the least impact. These results reveal that the composition of fatty acids, phenolic content and sensory profile are predominantly characteristics of a cultivar.

6.
Foods ; 8(11)2019 Nov 09.
Article in English | MEDLINE | ID: mdl-31717549

ABSTRACT

Despite having an interesting native olive gene pool and a rapidly emerging olive oil industry, monovarietal extra virgin olive oils (EVOO) from Croatia are relatively unexplored. To investigate the inter-varietal diversity of typical volatile and phenolic profiles of Croatian EVOO, 93 samples from six olive (Olea europaea L.) varieties were subjected to gas chromatography-ion trap mass spectrometry (GC-IT-MS) and ultra-performance liquid chromatography with diode array detection (UPLC-DAD), respectively. Quantitative descriptive sensory analysis was also performed. Analysis of variance extracted many relevant exclusive or partial discriminators between monovarietal EVOOs among the identified volatile compounds and phenols. Successful differentiation model with a 100% correct classification was built by linear discriminant analysis, while the most typical volatiles for each monovarietal EVOO were confirmed by partial least squares discriminant analysis. Diverse typical sensory attributes among the EVOOs were tentatively ascribed to the variations in the composition of volatiles and phenols. It was proven that the approach that comprises GC-IT-MS and UPLC-DAD analysis may provide additional objective information about varietal origin and typicity which successfully complement those obtained by sensory analysis. The approach was characterized as universal in nature, with a significant potential to contribute in strengthening the varietal identities and position on the market of monovarietal and Protected Denomination of Origin (PDO) EVOO.

7.
J Food Sci ; 84(4): 877-885, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30977923

ABSTRACT

The quality parameters, a variety of microcomponents, and the sensory characteristics of Oblica and Leccino cv. virgin olive oils (VOOs) were evaluated before and after filtration process adopted in order to estimate the individual varietal compositional changes. The dynamics of the formation of hydrolytic and oxidative changes in unfiltered (UF) and filtered (F) oils was asses by comparing level of free fatty acids (FFA), peroxide value (PV), and spectrophotometric indices periodically during 1 year of oil storage. An analysis of phenolics, tocopherols, and fatty acids was determined by chromatographic (HPLC and GC) and spectrometric methods, oxidative stability by Rancimat method while sensory analyses of obtained olive oils were performed by a trained professional panel. Single monovarietal VOO loses phenols in different rate with the applied filtration. Total secoiridoids decreases significantly in "Oblica" VOOs while no changes in their concentrations were found between unfiltered and filtered "Leccino" oils. Intensity of desired sensory properties decreases with filtration. In "Leccino" VOOs decrease of oxidative stability was more pronounced. After 12 months of storage, filtered "Leccino" VOOs had significantly lower FFA values than observed for the unfiltered counterparts. Further, there were no significant changes in PV and K270 values between unfiltered and filtered oils of both studied varietal oils. Storage time influenced more studied quality parameters than filtration, during which PV of unfiltered oils faster deteriorate. The highest changes between stored and corresponding fresh samples were exhibited in unfiltered "Oblica" VOOs. PRACTICAL APPLICATION: Quality enhancement of olive oil is constantly being done professionally and scientifically. The information provided in this study can be used in the industry of olive oil for improve the phenolic content, oxidative stability, and the sensory quality of virgin olive oils. The findings of stability test could be guidelines for mindful leading of the oil finishing up to bottling.


Subject(s)
Filtration , Food Analysis , Olive Oil/chemistry , Olive Oil/classification , Tocopherols/chemistry , Chromatography, High Pressure Liquid , Fatty Acids/chemistry , Oxidation-Reduction , Phenols/chemistry
8.
Food Chem ; 232: 610-620, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28490119

ABSTRACT

The interactive effects of ripening degree, malaxation duration and temperature on Oblica cv. (Olea europaea L.) virgin olive oil phenols, volatiles, and sensory quality were investigated. Olives were picked at three ripening degrees with International Olive Council indices of 0.68, 2.48 and 4.10, and processed by malaxation at 22 and 30°C, and at both temperatures for 30 and 60min. Ripening exhibited the strongest effect, and malaxation duration the weakest. Phenols were generally found to decrease during ripening; however 3,4-DHPEA-EDA and p-HPEA-EDA increased. Similar behaviour was observed for (E)-2-hexenal. Higher malaxation temperature induced an increase in particular important phenols and C6 alcohols, while C6 aldehydes mostly decreased. Interactions between the factors were established, mostly between ripening degree and malaxation temperature: the effect of the latter was most pronounced for ripe olives, especially for 3,4-DHPEA-EDA, p-HPEA-EDA and C6 volatiles. Sensory attributes were generally in agreement with the chemical composition.


Subject(s)
Olive Oil , Phenols , Temperature , Olea , Plant Oils
SELECTION OF CITATIONS
SEARCH DETAIL
...