Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
COPD ; 21(1): 2301549, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38348843

ABSTRACT

Exertional dyspnea, a key complaint of patients with chronic obstructive pulmonary disease (COPD), ultimately reflects an increased inspiratory neural drive to breathe. In non-hypoxemic patients with largely preserved lung mechanics - as those in the initial stages of the disease - the heightened inspiratory neural drive is strongly associated with an exaggerated ventilatory response to metabolic demand. Several lines of evidence indicate that the so-called excess ventilation (high ventilation-CO2 output relationship) primarily reflects poor gas exchange efficiency, namely increased physiological dead space. Pulmonary function tests estimating the extension of the wasted ventilation and selected cardiopulmonary exercise testing variables can, therefore, shed unique light on the genesis of patients' out-of-proportion dyspnea. After a succinct overview of the basis of gas exchange efficiency in health and inefficiency in COPD, we discuss how wasted ventilation translates into exertional dyspnea in individual patients. We then outline what is currently known about the structural basis of wasted ventilation in "minor/trivial" COPD vis-à-vis the contribution of emphysema versus a potential impairment in lung perfusion across non-emphysematous lung. After summarizing some unanswered questions on the field, we propose that functional imaging be amalgamated with pulmonary function tests beyond spirometry to improve our understanding of this deeply neglected cause of exertional dyspnea. Advances in the field will depend on our ability to develop robust platforms for deeply phenotyping (structurally and functionally), the dyspneic patients showing unordinary high wasted ventilation despite relatively preserved FEV1.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/complications , Exercise Tolerance/physiology , Lung , Dyspnea/etiology , Spirometry , Exercise Test
2.
Acad Radiol ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38378325

ABSTRACT

RATIONALE AND OBJECTIVES: Emergent evidence in several respiratory diseases supports translational potential for Phase-Resolved Functional Lung (PREFUL) MRI to spatially quantify ventilation but its feasibility and physiological relevance have not been demonstrated in patients with asthma. This study compares PREFUL-derived ventilation defect percent (VDP) in severe asthma patients to healthy controls and measures its responsiveness to bronchodilator therapy and relation to established measures of airways disease. MATERIALS AND METHODS: Forty-one adults with severe asthma and seven healthy controls performed same-day free-breathing 1H MRI, 129Xe MRI, spirometry, and oscillometry. A subset of participants (n = 23) performed chest CT and another subset of participants with asthma (n = 19) repeated 1H MRI following the administration of a bronchodilator. VDP was calculated for both PREFUL and 129Xe MRI. Additionally, the percent of functional small airways disease was determined from CT parametric response maps (PRMfSAD). RESULTS: PREFUL VDP measured pre-bronchodilator (19.1% [7.4-43.3], p = 0.0002) and post-bronchodilator (16.9% [6.1-38.4], p = 0.0007) were significantly greater than that of healthy controls (7.5% [3.7-15.5]) and was significantly decreased post-bronchodilator (from 21.9% [10.1-36.9] to 16.9% [6.1-38.4], p = 0.0053). PREFUL VDP was correlated with spirometry (FEV1%pred: r = -0.46, p = 0.0023; FVC%pred: r = -0.35, p = 0.024, FEV1/FVC: r = -0.46, p = 0.0028), 129Xe MRI VDP (r = 0.39, p = 0.013), and metrics of small airway disease (CT PRMfSAD: r = 0.55, p = 0.021; Xrs5 Hz: r = -0.44, p = 0.0046, and AX: r = 0.32, p = 0.044). CONCLUSION: PREFUL-derived VDP is responsive to bronchodilator therapy in asthma and is associated with measures of airflow obstruction and small airway dysfunction. These findings validate PREFUL VDP as a physiologically relevant and accessible ventilation imaging outcome measure in asthma.

3.
Acad Radiol ; 31(2): 648-659, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37550154

ABSTRACT

RATIONALE AND OBJECTIVES: Ultra short echo time (UTE) magnetic resonance imaging (MRI) pulse sequences have shown promise for airway assessment, but the feasibility and repeatability in the pediatric lung are unknown. The purpose of this work was to develop a semiautomated UTE MRI airway segmentation pipeline from the trachea-to-tertiary airways in pediatric participants and assess repeatability and lumen diameter correlations to lung function. MATERIALS AND METHODS: A total of 29 participants (n = 7 healthy, n = 11 cystic fibrosis, n = 6 asthma, and n = 5 ex-preterm), aged 7-18 years, were imaged using a 3D stack-of-spirals UTE examination at 3 T. Two independent observers performed airway segmentations using a pipeline developed in-house; observer 1 repeated segmentations 1 month later. Segmentations were extracted using region-growing with leak detection, then manually edited if required. The airway trees were skeletonized, pruned, and labeled. Airway lumen diameter measurements were extracted using ray casting. Intra- and interobserver variability was assessed using the Sørensen-Dice coefficient (DSC) and intra-class correlation coefficient (ICC). Correlations between lumen diameter and pulmonary function were assessed using Spearman's correlation coefficient. RESULTS: For airway segmentations and lumen diameter, intra- and interobserver DSCs were 0.88 and 0.80, while ICCs were 0.95 and 0.89, respectively. The variability increased from the trachea-to-tertiary airways for intra- (DSC: 0.91-0.64; ICC: 0.91-0.49) and interobserver (DSC: 0.84-0.51; ICC: 0.89-0.21) measurements. Lumen diameter was significantly correlated with forced expiratory volume in 1 second and forced vital capacity (P < .05). CONCLUSION: UTE MRI airway segmentation from the trachea-to-tertiary airways in pediatric participants across a range of diseases is feasible. The UTE MRI-derived lumen measurements were repeatable and correlated with lung function.


Subject(s)
Asthma , Cystic Fibrosis , Infant, Newborn , Humans , Child , Imaging, Three-Dimensional/methods , Lung/diagnostic imaging , Asthma/diagnostic imaging , Magnetic Resonance Imaging/methods
4.
Expert Rev Respir Med ; 17(7): 527-538, 2023.
Article in English | MEDLINE | ID: mdl-37491192

ABSTRACT

INTRODUCTION: Although historically challenging to perform in the lung, technological advancements have made Magnetic Resonance Imaging (MRI) increasingly applicable for pediatric pulmonary imaging. Furthermore, a wide array of functional imaging techniques has become available that may be leveraged alongside structural imaging for increasingly sensitive biomarkers, or as outcome measures in the evaluation of novel therapies. AREAS COVERED: In this review, recent technical advancements and modern methodologies for structural and functional lung MRI are described. These include ultrashort echo time (UTE) MRI, free-breathing contrast agent-free, functional lung MRI, and hyperpolarized gas MRI, amongst other techniques. Specific examples of the application of these methods in children are provided, principally drawn from recent research in asthma, bronchopulmonary dysplasia, and cystic fibrosis. EXPERT OPINION: Pediatric lung MRI is rapidly growing, and is well poised for clinical utilization, as well as continued research into early disease detection, disease processes, and novel treatments. Structure/function complementarity makes MRI especially attractive as a tool for increased adoption in the evaluation of pediatric lung disease. Looking toward the future, novel technologies, such as low-field MRI and artificial intelligence, mitigate some of the traditional drawbacks of lung MRI and will aid in improving access to MRI in general, potentially spurring increased adoption and demand for pulmonary MRI in children.


Subject(s)
Asthma , Cystic Fibrosis , Infant, Newborn , Humans , Child , Artificial Intelligence , Lung/diagnostic imaging , Cystic Fibrosis/diagnostic imaging , Magnetic Resonance Imaging/methods
5.
J Magn Reson Imaging ; 58(3): 936-948, 2023 09.
Article in English | MEDLINE | ID: mdl-36786650

ABSTRACT

BACKGROUND: Multiple-breath washout (MBW) 129 Xe MRI (MBW Xe-MRI) is a promising technique for following pediatric cystic fibrosis (CF) lung disease progression. However, its repeatability in stable CF needs to be established to use it as an outcome measure for novel therapies. PURPOSE: To assess intravisit and intervisit repeatability of MBW Xe-MRI in healthy and CF children. STUDY TYPE: Prospective, longitudinal cohort study. SUBJECTS: A total of 18 pediatric subjects (7 healthy, 11 CF). FIELD STRENGTH/SEQUENCE: A 3 T/2D coronal hyperpolarized (HP) 129 Xe images using GRE sequence. ASSESSMENT: All subjects completed MBW Xe-MRI, pulmonary function tests (PFTs) (spirometry, nitrogen [N2 ] MBW for lung clearance index [LCI]) and ventilation defect percent (VDP) at baseline (visit 1) and 1-month after. Fractional ventilation (FV), coefficient of variation (CoVFV ) maps were calculated from MBW Xe-MRI data acquired between intervening air washout breaths performed after an initial xenon breath-hold. Skewness of FV and CoVFV map distributions was also assessed. STATISTICAL TESTS: Repeatability: intraclass correlation coefficients (ICC), within-subject coefficient of variation (CV%), repeatability coefficient (CR). Agreement: Bland-Altman. For correlations between MBW Xe-MRI, VDP and PFTs: Spearman's correlation. Significance threshold: P < 0.05. RESULTS: For FV, intravisit median [IQR] ICC was high in both healthy (0.94 [0.48, 0.99]) and CF (0.83 [0.04, 0.97]) subjects. CoVFV also had good intravisit ICC in healthy (0.92 [0.42, 0.99]) and CF (0.79 [0.02, 0.96]) subjects. Similarly, for FV, intervisit ICC was high in health (0.94 [0.68, 0.99]) and CF (0.89 [0.61, 0.97]). CoVFV also had good intervisit ICC in health (0.92 [0.42, 0.99]) and CF (0.78 [0.26, 0.94]). FV had better intervisit repeatability than VDP. CoVFV correlated significantly with LCI (R = 0.56). Skewness of FV distributions significantly distinguished between cohorts at baseline. DATA CONCLUSION: MBW Xe-MRI had high intravisit and intervisit repeatability in healthy and stable CF subjects. CoVFV correlated with LCI, suggesting the importance of ventilation heterogeneity to early CF. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 2.


Subject(s)
Cystic Fibrosis , Humans , Child , Cystic Fibrosis/diagnostic imaging , Xenon , Prospective Studies , Longitudinal Studies , Respiratory Function Tests/methods , Lung/diagnostic imaging , Xenon Isotopes , Magnetic Resonance Imaging/methods
6.
Magn Reson Med ; 89(3): 1083-1091, 2023 03.
Article in English | MEDLINE | ID: mdl-36433705

ABSTRACT

PURPOSE: To demonstrate the feasibility of a rapid 3D stack-of-spirals (3D-SoS) imaging acquisition for hyperpolarized 129 Xe ventilation mapping in healthy pediatric participants and pediatric cystic fibrosis (CF) participants, in comparison to conventional Cartesian multislice (2D) gradient-recalled echo (GRE) imaging. METHODS: The 2D-GRE and 3D-SoS acquisitions were performed in 13 pediatric participants (5 healthy, 8 CF) during separate breath-holds. Images from both sequences were compared on the basis of ventilation defect percent (VDP) and other measures of image similarity. The nadir of transient oxygen saturation (SpO2 ) decline due to xenon breath-holding was measured with pulse oximetry, and expressed as a percent change relative to baseline. RESULTS: 129 Xe ventilation images were acquired in a breath-hold of 1.2-1.8 s with the 3D-SoS sequence, compared to 6.2-8.8 s for 2D-GRE. Mean ± SD VDP measures for 2D-GRE and 3D-SoS sequences were 5.02 ± 1.06% and 5.28 ± 1.08% in healthy participants, and 18.05 ± 8.26% and 18.75 ± 6.74% in CF participants, respectively. Across all participants, the intraclass correlation coefficient of VDP measures for both sequences was 0.98 (95% confidence interval: 0.94-0.99). The percent change in SpO2 was reduced to -2.1 ± 2.7% from -5.2 ± 3.5% with the shorter 3D-SoS breath-hold. CONCLUSION: Hyperpolarized 129 Xe ventilation imaging with 3D-SoS yielded images approximately five times faster than conventional 2D-GRE, reducing SpO2 desaturation and improving tolerability of the xenon administration. Analysis of VDP and other measures of image similarity demonstrate excellent agreement between images obtained with both sequences. 3D-SoS holds significant potential for reducing the acquisition time of hyperpolarized 129 Xe MRI, and/or increasing spatial resolution while adhering to clinical breath-hold constraints.


Subject(s)
Cystic Fibrosis , Respiration Disorders , Humans , Child , Cystic Fibrosis/diagnostic imaging , Xenon Isotopes , Lung/diagnostic imaging , Respiration , Xenon , Magnetic Resonance Imaging/methods
7.
Magn Reson Med ; 89(5): 2048-2061, 2023 05.
Article in English | MEDLINE | ID: mdl-36576212

ABSTRACT

PURPOSE: The purpose of this study is to assess the intra- and interscan repeatability of free-breathing phase-resolved functional lung (PREFUL) MRI in stable pediatric cystic fibrosis (CF) lung disease in comparison to static breath-hold hyperpolarized 129-xenon MRI (Xe-MRI) and pulmonary function tests. METHODS: Free-breathing 1-hydrogen MRI and Xe-MRI were acquired from 15 stable pediatric CF patients and seven healthy age-matched participants on two visits, 1 month apart. Same-visit MRI scans were also performed on a subgroup of the CF patients. Following the PREFUL algorithm, regional ventilation (RVent) and regional flow volume loop cross-correlation maps were determined from the free-breathing data. Ventilation defect percentage (VDP) was determined from RVent maps (VDPRVent ), regional flow volume loop cross-correlation maps (VDPCC ), VDPRVent ∪ VDPCC , and multi-slice Xe-MRI. Repeatability was evaluated using Bland-Altman analysis, coefficient of repeatability (CR), and intraclass correlation. RESULTS: Minimal bias and no significant differences were reported for all PREFUL MRI and Xe-MRI VDP parameters between intra- and intervisits (all P > 0.05). Repeatability of VDPRVent , VDPCC , VDPRVent ∪ VDPCC , and multi-slice Xe-MRI were lower between the two-visit scans (CR = 14.81%, 15.36%, 16.19%, and 9.32%, respectively) in comparison to the same-day scans (CR = 3.38%, 2.90%, 1.90%, and 3.92%, respectively). pulmonary function tests showed high interscan repeatability relative to PREFUL MRI and Xe-MRI. CONCLUSION: PREFUL MRI, similar to Xe-MRI, showed high intravisit repeatability but moderate intervisit repeatability in CF, which may be due to inherent disease instability, even in stable patients. Thus, PREFUL MRI may be considered a suitable outcome measure for future treatment response studies.


Subject(s)
Cystic Fibrosis , Humans , Child , Cystic Fibrosis/diagnostic imaging , Respiration , Lung/diagnostic imaging , Respiratory Function Tests , Xenon Isotopes , Magnetic Resonance Imaging , Xenon
8.
J Magn Reson Imaging ; 55(6): 1696-1707, 2022 06.
Article in English | MEDLINE | ID: mdl-35312203

ABSTRACT

BACKGROUND: Evaluation of structural lung abnormalities with magnetic resonance imaging (MRI) has previously been shown to be predictive of clinical neonatal outcomes in preterm birth. MRI during free-breathing with phase-resolved functional lung (PREFUL) may allow for complimentary functional information without exogenous contrast. PURPOSE: To investigate the feasibility of structural and functional pulmonary MRI in a cohort of neonates and infants with no cardiorespiratory disease. Macrovascular pulmonary blood flows were also evaluated. STUDY TYPE: Prospective. POPULATION: Ten term infants with no clinically defined cardiorespiratory disease were imaged. Infants recruited from the general population and neonatal intensive care unit (NICU) were studied. FIELD STRENGTH/SEQUENCE: T1 -weighted VIBE, T2 -weighted BLADE uncorrected for motion. Ultrashort echo time (UTE) and 3D-flow data were acquired during free-breathing with self-navigation and retrospective reconstruction. Single slice 2D-gradient echo (GRE) images were acquired during free-breathing for PREFUL analysis. Imaging was performed at 3 T. ASSESSMENT: T1 , T2 , and UTE images were scored according to the modified Ochiai scheme by three pediatric body radiologists. Ventilation/perfusion-weighted maps were extracted from free-breathing GRE images using PREFUL analysis. Ventilation and perfusion defect percent (VDP, QDP) were calculated from the segmented ventilation and perfusion-weighted maps. Time-averaged cardiac blood velocities from three-dimensional-flow were evaluated in major pulmonary arteries and veins. STATISTICAL TEST: Intraclass correlation coefficient (ICC). RESULTS: The ICC of replicate structural scores was 0.81 (95% CI: 0.45-0.95) across three observers. Elevated Ochiai scores, VDP, and QDP were observed in two NICU participants. Excluding these participants, mean ± standard deviation structural scores were 1.2 ± 0.8, while VDP and QDP were 1.0% ± 1.1% and 0.4% ± 0.5%, respectively. Main pulmonary arterial blood flows normalized to body surface area were 3.15 ± 0.78 L/min/m2 . DATA CONCLUSION: Structural and functional pulmonary imaging is feasible using standard clinical MRI hardware (commercial whole-body 3 T scanner, table spine array, and flexible thoracic array) in free-breathing infants. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Subject(s)
Premature Birth , Child , Feasibility Studies , Female , Humans , Imaging, Three-Dimensional , Infant, Newborn , Lung , Magnetic Resonance Imaging , Pregnancy , Prospective Studies , Retrospective Studies
9.
Magn Reson Med ; 87(4): 1971-1979, 2022 04.
Article in English | MEDLINE | ID: mdl-34841605

ABSTRACT

PURPOSE: To demonstrate the feasibility of 129 Xe chemical shift saturation recovery (CSSR) combined with spiral-IDEAL imaging for simultaneous measurement of the time-course of red blood cell (RBC) and brain tissue signals in the rat brain. METHODS: Images of both the RBC and brain tissue 129 Xe signals from the brains of five rats were obtained using interleaved spiral-IDEAL imaging following chemical shift saturation pulses applied at multiple CSSR delay times, τ. A linear fit of the signals to τ was used to calculate the slope of the signal for both RBC and brain tissue compartments on a voxel-by-voxel basis. Gas transfer was evaluated by measuring the ratio of the whole brain tissue-to-RBC signal intensities as a function of τ. To investigate the relationship between the CSSR images and gas transfer in the brain, the experiments were repeated during hypercapnic ventilation. RESULTS: Hypercapnia, affected the ratio of the tissue-to-RBC signal intensity (p = 0.026), consistent with an increase in gas transfer. CONCLUSION: CSSR with spiral-IDEAL imaging is feasible for acquisition of 129 Xe RBC and brain tissue time-course images in the rat brain. Differences in the time-course of the signal intensity ratios are consistent with gas transfer changes expected under hypercapnic conditions.


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Animals , Brain/diagnostic imaging , Lung , Magnetic Resonance Imaging/methods , Rats , Respiration
10.
Magn Reson Med ; 86(6): 2966-2986, 2021 12.
Article in English | MEDLINE | ID: mdl-34478584

ABSTRACT

Hyperpolarized (HP) 129 Xe MRI uniquely images pulmonary ventilation, gas exchange, and terminal airway morphology rapidly and safely, providing novel information not possible using conventional imaging modalities or pulmonary function tests. As such, there is mounting interest in expanding the use of biomarkers derived from HP 129 Xe MRI as outcome measures in multi-site clinical trials across a range of pulmonary disorders. Until recently, HP 129 Xe MRI techniques have been developed largely independently at a limited number of academic centers, without harmonizing acquisition strategies. To promote uniformity and adoption of HP 129 Xe MRI more widely in translational research, multi-site trials, and ultimately clinical practice, this position paper from the 129 Xe MRI Clinical Trials Consortium (https://cpir.cchmc.org/XeMRICTC) recommends standard protocols to harmonize methods for image acquisition in HP 129 Xe MRI. Recommendations are described for the most common HP gas MRI techniques-calibration, ventilation, alveolar-airspace size, and gas exchange-across MRI scanner manufacturers most used for this application. Moreover, recommendations are described for 129 Xe dose volumes and breath-hold standardization to further foster consistency of imaging studies. The intention is that sites with HP 129 Xe MRI capabilities can readily implement these methods to obtain consistent high-quality images that provide regional insight into lung structure and function. While this document represents consensus at a snapshot in time, a roadmap for technical developments is provided that will further increase image quality and efficiency. These standardized dosing and imaging protocols will facilitate the wider adoption of HP 129 Xe MRI for multi-site pulmonary research.


Subject(s)
Lung , Xenon Isotopes , Lung/diagnostic imaging , Magnetic Resonance Imaging , Multicenter Studies as Topic , Pulmonary Ventilation , Respiration
11.
Am J Physiol Lung Cell Mol Physiol ; 321(3): L507-L517, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34189953

ABSTRACT

Premature infants often require mechanical ventilation and oxygen therapy, which can result in bronchopulmonary dysplasia (BPD), characterized by developmental arrest and impaired lung function. Conventional clinical methods for assessing the prenatal lung are not adequate for the detection and assessment of long-term health risks in infants with BPD, highlighting the need for a noninvasive tool for the characterization of lung microstructure and function. Theoretical diffusion models, like the model of xenon exchange (MOXE), interrogate alveolar gas exchange by predicting the uptake of inert hyperpolarized (HP) 129Xe gas measured with HP 129Xe magnetic resonance spectroscopy (MRS). To investigate HP 129Xe MRS as a tool for noninvasive characterization of pulmonary microstructural and functional changes in vivo, HP 129Xe gas exchange data were acquired in an oxygen exposure rat model of BPD that recapitulates the fewer and larger distal airways and pulmonary vascular stunting characteristics of BPD. Gas exchange parameters from MOXE, including airspace mean chord length (Lm), apparent hematocrit in the pulmonary capillaries (HCT), and pulmonary capillary transit time (tx), were compared with airspace mean axis length and area density (MAL and ρA) and percentage area of tissue and air (PTA and PAA) from histology. Lm was significantly larger in the exposed rats (P = 0.003) and correlated with MAL, ρA, PTA, and PAA (0.59<|ρ|<0.66 and P < 0.05). Observed increase in HCT (P = 0.012) and changes in tx are also discussed. These findings support the use of HP 129Xe MRS for detecting fewer, enlarged distal airways in this rat model of BPD, and potentially in humans.


Subject(s)
Bronchopulmonary Dysplasia/metabolism , Capillaries/metabolism , Lung/metabolism , Magnetic Resonance Spectroscopy , Pulmonary Gas Exchange , Animals , Animals, Newborn , Bronchopulmonary Dysplasia/chemically induced , Bronchopulmonary Dysplasia/pathology , Capillaries/pathology , Disease Models, Animal , Female , Humans , Lung/blood supply , Lung/pathology , Male , Rats , Rats, Sprague-Dawley , Xenon Isotopes
12.
Magn Reson Med ; 86(3): 1187-1193, 2021 09.
Article in English | MEDLINE | ID: mdl-33837550

ABSTRACT

PURPOSE: To investigate the dependence of dissolved 129 Xe chemical shift on the fraction of inhaled oxygen, Fi O2 , in the lungs of healthy rats. METHODS: The chemical shifts of 129 Xe dissolved in red blood cells, δRBC , and blood plasma and/or tissue, δPlasma , were measured using MRS in 12 Sprague Dawley rats mechanically ventilated at Fi O2 values of 0.14, 0.19, and 0.22. Regional effects on the chemical shifts were controlled using a chemical shift saturation recovery sequence with a fixed delay time. MRS was also performed at an Fi CO2 value of 0.085 to investigate the potential effect of the vascular response on δRBC and δPlasma . RESULTS: δRBC increased with decreasing Fi O2 (P = .0002), and δPlasma showed no dependence on Fi O2 (P = .23). δRBC at Fi CO2 = 0 (210.7 ppm ± 0.1) and at Fi CO2 = 0.085 (210.6 ppm ± 0.2) were not significantly different (P = .67). δPlasma at Fi CO2 = 0 (196.9 ppm ± 0.3) and at Fi CO2 = 0.085 (197.0 ppm ± 0.1) were also not significantly different (P = .81). CONCLUSION: Rat lung δRBC showed an inverse relationship to Fi O2 , opposite to the relationship previously demonstrated for in vitro human blood. Rat lung δRBC did not depend on Fi CO2 .


Subject(s)
Magnetic Resonance Imaging , Xenon Isotopes , Animals , Erythrocytes , Lung , Oxygen , Rats , Rats, Sprague-Dawley
13.
Respir Med ; 180: 106368, 2021.
Article in English | MEDLINE | ID: mdl-33740737

ABSTRACT

INTRODUCTION: Pulmonary function tests (PFTs) are the main objective measures used to assess asthma in children. However, PFTs provide a global measure of lung function. Hyperpolarised xenon-129 magnetic resonance imaging (129Xe-MRI) can assess lung function spatially. This cross-sectional cohort study aimed to evaluate the use of 129Xe-MRI in detecting ventilation abnormalities in children with well-controlled severe asthma pre- and post-bronchodilator (BD). METHOD: Six healthy children (aged 11 ± 3) and six with well-controlled severe asthma (14 ± 1) underwent spirometry, multiple breath washout (MBW), and 129Xe-MRI. These tests were repeated post-BD in the asthma cohort. Image analysis was performed in MATLAB. Wilcoxon signed-rank test, repeated measures analysis of variance (ANOVA), and Spearman's rank correlation coefficient were used for statistical analysis. RESULTS: A significantly higher number of ventilation defects were found in the asthma cohort pre-BD compared to the healthy participants and post-BD within the asthma cohort (p = 0.02 and 0.01). A greater number of wedge-shaped defects were detected in the asthma cohort pre-BD compared to healthy participants and post-BD within the asthma cohort (p = 0.01 and 0.008, respectively). 129Xe ventilation defect percentage (VDP) and coefficient of variation (CoV) were significantly higher in the asthma cohort pre-BD compared to the healthy cohort (p = 0.006 for both). VDP and CoV were reduced significantly post-BD in the asthma cohort, to a level where there was no longer a significant difference between the two cohorts. CONCLUSION: 129Xe-MRI is a sensitive marker of ventilation inhomogeneity in paediatric severe asthma and may potentially be used as a biomarker to assess disease progression and therapeutic response.


Subject(s)
Albuterol/therapeutic use , Asthma/diagnosis , Forced Expiratory Volume/drug effects , Lung/diagnostic imaging , Magnetic Resonance Imaging/methods , Xenon Isotopes/pharmacology , Adolescent , Asthma/drug therapy , Asthma/physiopathology , Bronchodilator Agents/therapeutic use , Child , Cross-Sectional Studies , Female , Humans , Lung/physiopathology , Male , Pilot Projects
14.
Magn Reson Med ; 84(1): 52-60, 2020 07.
Article in English | MEDLINE | ID: mdl-31814155

ABSTRACT

PURPOSE: To measure the chemical shift of hyperpolarized 129 Xe dissolved in the red blood cells(δRBC ) of a cohort of rats exposed to hyperoxia and intermittent hypoxia (IH) to mimic human bronchopulmonary dysplasia, and to investigate the effect of xenon-blood distribution time on δRBC . METHODS: δRBC was measured from spectra acquired using a chemical shift saturation recovery sequence from 15 Sprague-Dawley rats exposed to hyperoxia-IH and 10 age-matched control rats. Sensitization to the xenon-blood distribution time was achieved by varying the time between saturation pulses, τ. δRBC was compared with blood fraction measured by histology of the cohort and blood oxygenation measured directly using pulse oximetry following a hypoxic challenge in an identically exposed cohort. RESULTS: The mean δRBC in the hyperoxia-IH exposed rats was 0.55 ± 0.04 ppm lower than that of the healthy cohort (P = .0038), and this difference did not depend on τ (P = .996). The blood fraction of the exposed cohort was lower than that of the healthy cohort (P = .0397). Oximetry measurements showed that the baseline arterial oxygen saturation (Sa O2 ) of each cohort was not different (P = .72), but after a hypoxic challenge, the Sa O2 of the exposed cohort was lower than that of the healthy cohort (P = .003). CONCLUSION: δRBC is reduced in rats exposed to hyperoxia-IH compared with control rats. The change in δRBC is consistent with enhanced blood oxygen desaturation of the exposed cohort measured by pulse oximetry during a hypoxic challenge. This suggests that the observed change in δRBC reflects enhanced desaturation in the hyperoxia-IH exposed cohort compared with the healthy cohort.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Animals , Erythrocytes , Humans , Infant, Newborn , Lung , Rats , Rats, Sprague-Dawley , Xenon
15.
Magn Reson Med ; 82(3): 1113-1119, 2019 09.
Article in English | MEDLINE | ID: mdl-30989730

ABSTRACT

PURPOSE: To demonstrate the feasibility of mapping gas exchange with single breath-hold hyperpolarized (HP) 129 Xe in humans, acquiring parametric maps of lung physiology. The potential benefit of acceleration using parallel imaging for this application is also explored. METHODS: Six healthy volunteers were scanned with a modified spiral-IDEAL sequence to acquire gas exchange-weighted images using a single dose of 129 Xe. These images were fit with the model of xenon exchange (MOXE) on a voxel-wise basis calculating parametric maps of lung physiology, specifically: air-capillary barrier thickness (δ), alveolar septal thickness (d), capillary transit time (tx ), pulmonary hematocrit (HCT), and alveolar surface area-to-volume ratio (SVR). An accelerated version of the sequence was also tested in subset of 4 volunteers and compared to the fully sampled (FS) results. RESULTS: Mean image-wide values calculated from MOXE parametric maps derived from FS dissolved 129 Xe spiral-IDEAL images were: δ = 0.89 ± 0.17 µm, d = 7.5 ± 0.5 µm, tx = 1.1 ± 0.2s, HCT = 28.8 ± 2.3%, and SVR = 140 ± 16 cm-1 , in good agreement with previously published values based on whole-lung spectroscopy of healthy human subjects. Parallel imaging sufficiently reduces artifacting in accelerated images, but increases disagreement with MOXE parameters derived from FS data with mean voxel-wise unsigned relative differences of: δ = 39 ± 9%, d = 22 ± 3%, tx = 117 ± 43%, HCT = 11 ± 2%, and SVR = 31 ± 12%. CONCLUSION: Dissolved HP 129 Xe spiral-IDEAL imaging for gas exchange mapping is feasible in humans using a single breath-hold. Accelerated gas exchange mapping is also shown to be feasible but requires further improvements to increase quantitative accuracy.


Subject(s)
Image Processing, Computer-Assisted/methods , Lung/diagnostic imaging , Magnetic Resonance Imaging/methods , Pulmonary Gas Exchange/physiology , Xenon Isotopes/chemistry , Adult , Female , Humans , Lung/physiology , Male , Xenon Isotopes/metabolism , Young Adult
16.
Med Phys ; 45(2): 803-816, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29238999

ABSTRACT

PURPOSE: To map physiological gas exchange parameters using dissolved hyperpolarized (HP) 129 Xe in a rat model of regional radiation-induced lung injury (RILI) with spiral-IDEAL and the model of xenon exchange (MOXE). Results are compared to quantitative histology of pulmonary tissue and red blood cell (RBC) distribution. METHODS: Two cohorts (n = 6 each) of age-matched rats were used. One was irradiated in the right-medial lung, producing regional injury. Gas exchange was mapped 4 weeks postirradiation by imaging dissolved-phase HP 129 Xe using spiral-IDEAL at five gas exchange timepoints using a clinical 1.5 T scanner. Physiological lung parameters were extracted regionally on a voxel-wise basis using MOXE. Mean gas exchange parameters, specifically air-capillary barrier thickness (δ) and hematocrit (HCT) in the right-medial lung were compared to the contralateral lung as well as nonirradiated control animals. Whole-lung spectroscopic analysis of gas exchange was also performed. RESULTS: δ was significantly increased (1.43 ± 0.12 µm from 1.07 ± 0.09 µm) and HCT was significantly decreased (17.2 ± 1.2% from 23.6 ± 1.9%) in the right-medial lung (i.e., irradiated region) compared to the contralateral lung of the irradiated rats. These changes were not observed in healthy controls. δ and HCT correlated with histologically measured increases in pulmonary tissue heterogeneity (r = 0.77) and decreases in RBC distribution (r = 0.91), respectively. No changes were observed using whole-lung analysis. CONCLUSION: This work demonstrates the feasibility of mapping gas exchange using HP 129 Xe in an animal model of RILI 4 weeks postirradiation. Spatially resolved gas exchange mapping is sensitive to regional injury between cohorts that was undetected with whole-lung gas exchange analysis, in agreement with histology. Gas exchange mapping holds promise for assessing regional lung function in RILI and other pulmonary diseases.


Subject(s)
Lung/metabolism , Lung/radiation effects , Xenon Isotopes/adverse effects , Xenon Isotopes/metabolism , Animals , Lung/diagnostic imaging , Magnetic Resonance Imaging , Male , Rats , Rats, Sprague-Dawley
17.
Adv Radiat Oncol ; 2(3): 475-484, 2017.
Article in English | MEDLINE | ID: mdl-29114616

ABSTRACT

PURPOSE: The purpose of this work was to use magnetic resonance imaging (MRI) of hyperpolarized (HP) 129Xe dissolved in pulmonary tissue (PT) and red blood cells (RBCs) to detect regional changes to PT structure and perfusion in a partial-lung rat model of radiation-induced lung injury and compare with histology. METHODS AND MATERIALS: The right medial region of the lungs of 6 Sprague-Dawley rats was irradiated (20 Gy, single-fraction). A second nonirradiated cohort served as the control group. Imaging was performed 4 weeks after irradiation to quantify intensity and heterogeneity of PT and RBC 129Xe signals. Imaging findings were correlated with measures of PT and RBC distribution. RESULTS: Asymmetric (right vs left) changes in 129Xe signal intensity and heterogeneity were observed in the irradiated cohort but were not seen in the control group. PT signal was observed to increase in intensity and heterogeneity and RBC signal was observed to increase in heterogeneity in the irradiated right lungs, consistent with histology. CONCLUSION: Regional changes to PT and RBC 129Xe signals are detectable 4 weeks following partial-lung irradiation in rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...