Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 12: 673145, 2021.
Article in English | MEDLINE | ID: mdl-34054582

ABSTRACT

Burgeoning evidence has indicated that normal autophagy is required for nuclear factor erythroid 2-related factor (Nrf2)-mediated cardiac protection whereas autophagy inhibition turns on Nrf2-mediated myocardial damage and dysfunction in a setting of pressure overload (PO). However, such a concept remains to be fully established by a careful genetic interrogation in vivo. This study was designed to validate the hypothesis using a mouse model of PO-induced cardiomyopathy and heart failure, in which cardiac autophagy and/or Nrf2 activity are genetically inhibited. Myocardial autophagy inhibition was induced by cardiomyocyte-restricted (CR) knockout (KO) of autophagy related (Atg) 5 (CR-Atg5KO) in adult mice. CR-Atg5KO impaired cardiac adaptations while exacerbating cardiac maladaptive responses in the setting of PO. Notably, it also turned off Nrf2-mediated defense while switching on Nrf2-operated tissue damage in PO hearts. In addition, cardiac autophagy inhibition selectively inactivated extracellular signal regulated kinase (ERK), which coincided with increased nuclear accumulation of Nrf2 and decreased nuclear translocation of activated ERK in cardiomyocytes in PO hearts. Mechanistic investigation revealed that autophagy is required for the activation of ERK, which suppresses Nrf2-driven expression of angiotensinogen in cardiomyocytes. Taken together, these results provide direct evidence consolidating the notion that normal autophagy enables Nrf2-operated adaptation while switching off Nrf2-mediated maladaptive responses in PO hearts partly through suppressing Nrf2-driven angiotensinogen expression in cardiomyocytes.

2.
Diabetes ; 69(12): 2720-2734, 2020 12.
Article in English | MEDLINE | ID: mdl-32948607

ABSTRACT

Nuclear factor-erythroid factor 2-related factor 2 (Nrf2) may either ameliorate or worsen diabetic cardiomyopathy. However, the underlying mechanisms are poorly understood. Herein we report a novel mechanism of Nrf2-mediated myocardial damage in type 1 diabetes (T1D). Global Nrf2 knockout (Nrf2KO) hardly affected the onset of cardiac dysfunction induced by T1D but slowed down its progression in mice independent of sex. In addition, Nrf2KO inhibited cardiac pathological remodeling, apoptosis, and oxidative stress associated with both onset and advancement of cardiac dysfunction in T1D. Such Nrf2-mediated progression of diabetic cardiomyopathy was confirmed by a cardiomyocyte-restricted (CR) Nrf2 transgenic approach in mice. Moreover, cardiac autophagy inhibition via CR knockout of autophagy-related 5 gene (CR-Atg5KO) led to early onset and accelerated development of cardiomyopathy in T1D, and CR-Atg5KO-induced adverse phenotypes were rescued by additional Nrf2KO. Mechanistically, chronic T1D leads to glucolipotoxicity inhibiting autolysosome efflux, which in turn intensifies Nrf2-driven transcription to fuel lipid peroxidation while inactivating Nrf2-mediated antioxidant defense and impairing Nrf2-coordinated iron metabolism, thereby leading to ferroptosis in cardiomyocytes. These results demonstrate that diabetes over time causes autophagy deficiency, which turns off Nrf2-mediated defense while switching on an Nrf2-operated pathological program toward ferroptosis in cardiomyocytes, thereby worsening the progression of diabetic cardiomyopathy.


Subject(s)
Autophagy/physiology , Diabetic Cardiomyopathies/pathology , NF-E2-Related Factor 2/metabolism , Animals , Cell Line , Mice , Mice, Knockout , Myoblasts , NF-E2-Related Factor 2/genetics , Rats
3.
Front Physiol ; 11: 722, 2020.
Article in English | MEDLINE | ID: mdl-32733266

ABSTRACT

Nuclear factor-erythroid factor 2-related factor 2 (Nrf2) is a critical transcription factor that regulates the expression of over 1000 genes in the cell under normal and stressed conditions. These transcripts can be categorized into different groups with distinct functions, including antioxidative defense, detoxification, inflammatory responses, transcription factors, proteasomal and autophagic degradation, and metabolism. Nevertheless, Nrf2 has been historically considered as a crucial regulator of antioxidant defense to protect against various insult-induced organ damage and has evolved as a promising drug target for the treatment of human diseases, such as heart failure. However, burgeoning evidence has revealed a detrimental role of Nrf2 in cardiac pathological remodeling and dysfunction toward heart failure. In this mini-review, we outline recent advances in structural features of Nrf2 and regulation of Nrf2 activity and discuss the emerging dark side of Nrf2 in the heart as well as the potential mechanisms of Nrf2-mediated myocardial damage and dysfunction.

4.
Arterioscler Thromb Vasc Biol ; 40(8): 1870-1890, 2020 08.
Article in English | MEDLINE | ID: mdl-32493169

ABSTRACT

OBJECTIVE: Neointima formation is a primary cause of intermediate to late vein graft (VG) failure. However, the precise source of neointima cells in VGs remains unclear. Approach and Results: Herein we clarify the relative contributions of mature vascular smooth muscle cells (SMCs) and endothelial cells (ECs) to neointima formation in a mouse model of VG remodeling via the genetic-inducible fate mapping approaches. Regardless of the magnitude of neointima formation, the recipient arterial and the donor venous SMCs contributed ≈55% of the neointima cells at the anastomotic regions, whereas only donor venous SMCs donated ≈68% of the neointima cells at the middle bodies. A small portion of the SMC-derived cells became non-SMC cells, most likely vascular stem cells, and constituted 2% to 11% of the cells in each major layer of VGs. In addition, the recipient arterial ECs were the major cellular source of re-endothelialization but did not contribute to neointima formation. The donor venous ECs donated ≈17% neointima cells in the VGs with mild neointima formation and conditional media from ECs after endothelial-to-mesenchymal transition suppressed vascular SMC dedifferentiation. CONCLUSIONS: The recipient arterial and donor venous mature SMCs dominate but contribute distinctly to intimal hyperplasia at the anastomosis and the middle body regions of VGs. The recipient arterial ECs are the major cellular source of re-endothelialization but do not donate neointima formation in VGs. Only the donor venous ECs undergo endothelial-to-mesenchymal transition. Endothelial-to-mesenchymal transition is marginal for generating neointima cells but is likely required for controlling the quality of VG remodeling.


Subject(s)
Endothelial Cells/pathology , Jugular Veins/transplantation , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Neointima/pathology , Animals , Hyperplasia , Mesoderm/pathology , Mice , Mice, Inbred C57BL , Vascular Remodeling
5.
J Mol Cell Cardiol ; 145: 59-73, 2020 08.
Article in English | MEDLINE | ID: mdl-32553594

ABSTRACT

Deubiquitinating enzymes (DUBs) appear to be a new class of regulators of cardiac homeostasis and disease. However, DUB-mediated signaling in the heart is not well understood. Herein we report a novel mechanism by which cylindromatosis (CYLD), a DUB mediates cardiac pathological remodeling and dysfunction. Cardiomyocyte-restricted (CR) overexpression of CYLD (CR-CYLD) did not cause gross health issues and hardly affected cardiac function up to age of one year in both female and male mice at physiological conditions. However, CR-CYLD overexpression exacerbated pressure overload (PO)-induced cardiac dysfunction associated with suppressed cardiac hypertrophy and increased myocardial apoptosis in mice independent of the gender. At the molecular level, CR-CYLD overexpression enhanced PO-induced increases in poly-ubiquitinated proteins marked by lysine (K)48-linked ubiquitin chains and autophagic vacuoles containing undegraded contents while suppressing autophagic flux. Augmentation of cardiac autophagy via CR-ATG7 overexpression protected against PO-induced cardiac pathological remodeling and dysfunction in both female and male mice. Intriguingly, CR-CYLD overexpression switched the CR-ATG7 overexpression-dependent cardiac protection into myocardial damage and dysfunction associated with increased accumulation of autophagic vacuoles containing undegraded contents in the heart. Genetic manipulation of Cyld in combination with pharmacological modulation of autophagic functional status revealed that CYLD suppressed autolysosomal degradation and promoted cell death in cardiomyocytes. In addition, Cyld gene gain- and/or loss-of-function approaches in vitro and in vivo demonstrated that CYLD mediated cardiomyocyte death associated with impaired reactivation of mechanistic target of rapamycin complex 1 (mTORC1) and upregulated Ras genes from rat brain 7 (Rab7), two key components for autolysosomal degradation. These results demonstrate that CYLD serves as a novel mediator of cardiac pathological remodeling and dysfunction by suppressing autolysosome efflux in cardiomyocytes. Mechanistically, it is most likely that CYLD suppresses autolysosome efflux via impairing mTORC1 reactivation and interrupting Rab7 release from autolysosomes in cardiomyocytes.


Subject(s)
Cardiomyopathies/metabolism , Deubiquitinating Enzyme CYLD/metabolism , Lysosomes/metabolism , Myocytes, Cardiac/metabolism , Pressure , Animals , Autophagy , Autophagy-Related Protein 7/metabolism , Brain/metabolism , Fibroblasts/metabolism , Genes, ras , Lysine/metabolism , Lysosomes/ultrastructure , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice, Transgenic , Myocardium/pathology , Myocytes, Cardiac/pathology , Rats , Ubiquitination , Up-Regulation , Vacuoles/metabolism , Vacuoles/ultrastructure
6.
Exp Ther Med ; 15(5): 4298-4308, 2018 May.
Article in English | MEDLINE | ID: mdl-29849774

ABSTRACT

Osteonecrosis of the femoral head is an orthopedic disease caused by femoral head damage or insufficient blood supply, which leads to the death of bone cells and bone marrow. Osteonecrosis of the femoral head leads to changes in the structure of the femoral head, femoral head collapse and joint dysfunction. Bone morphogenetic protein-2 (BMP-2) exhibits beneficial effects on bone formation, repair and angiogenesis at the femoral head. In the present study, the therapeutic effects of recombinant human BMP-2 containing an Fc fragment (rBMP-2/Fc) were investigated on a steroid induced mouse model of osteonecrosis of the femoral head. Bone cell viability was used to determine the in vitro effects of rBMP-2/Fc. The therapeutic efficacies of rBMP-2/Fc on mice with osteonecrosis of the femoral head were evaluated using clinical arthritis scores. The expression levels of inflammatory factors in the mice were analyzed by reverse transcription-quantitative polymerase chain reaction. Histological analysis was used to evaluate the effects of rBMP-2/Fc on the femoral head. The results revealed that rBMP-2/Fc treatment significantly increased the IL-6, IL-10, vascular endothelial growth factor and macrophage colony-stimulating factor expression levels in synovial cells compared with the control group (P<0.01). Furthermore, it was observed that rBMP-2/Fc significantly improved the viability and growth of synovial cells (P<0.01) through the nuclear factor (NF)-κB signaling pathway. Treatment with rBMP-2/Fc significantly decreased receptor activator of NF-κB ligand expression levels. Furthermore, in vivo experiments demonstrated that rBMP-2/Fc treatment markedly relieved the arthralgia and damage caused by osteonecrosis of the femoral head. In conclusion, rBMP-2/Fc treatment may be beneficial for articular cartilage repair by the upregulation of angiogenesis factors through the down regulation of the NF-κB signaling pathway in mice with osteonecrosis of the femoral head. This preclinical data suggests that rBMP-2/Fc may be a promising novel agent for treatment of osteonecrosis of the femoral head.

7.
Hypertension ; 67(1): 107-17, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26573705

ABSTRACT

Nuclear factor erythroid-2-related factor 2 (Nrf2) appears to exert either a protective or detrimental effect on the heart; however, the underlying mechanism remains poorly understood. Herein, we uncovered a novel mechanism for turning off the Nrf2-mediated cardioprotection and switching on Nrf2-mediated cardiac dysfunction. In a murine model of pressure overload-induced cardiac remodeling and dysfunction via transverse aortic arch constriction, knockout of Nrf2 enhanced myocardial necrosis and death rate during an initial stage of cardiac adaptation when myocardial autophagy function is intact. However, knockout of Nrf2 turned out to be cardioprotective throughout the later stage of cardiac maladaptive remodeling when myocardial autophagy function became insufficient. Transverse aortic arch constriction -induced activation of Nrf2 was dramatically enhanced in the heart with impaired autophagy, which is induced by cardiomyocyte-specific knockout of autophagy-related gene (Atg)5. Notably, Nrf2 activation coincided with the upregulation of angiotensinogen (Agt) only in the autophagy-impaired heart after transverse aortic arch constriction. Agt5 and Nrf2 gene loss-of-function approaches in combination with Jak2 and Fyn kinase inhibitors revealed that suppression of autophagy inactivated Jak2 and Fyn and nuclear translocation of Fyn, while enhancing nuclear translocation of Nrf2 and Nrf2-driven Agt expression in cardiomyocytes. Taken together, these results indicate that the pathophysiological consequences of Nrf2 activation are closely linked with the functional integrity of myocardial autophagy during cardiac remodeling. When autophagy is intact, Nrf2 is required for cardiac adaptive responses; however, autophagy impairment most likely turns off Fyn-operated Nrf2 nuclear export thus activating Nrf2-driven Agt transcription, which exacerbates cardiac maladaptation leading to dysfunction.


Subject(s)
Myocardium/metabolism , NF-E2-Related Factor 2/metabolism , Up-Regulation , Ventricular Pressure/physiology , Ventricular Remodeling/physiology , Animals , Autophagy , Disease Models, Animal , Mice , Mice, Knockout , Myocardium/pathology , Myocytes, Cardiac/metabolism , Oxidative Stress , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...