Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters











Publication year range
1.
Macromol Biosci ; : e2400126, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39239781

ABSTRACT

Protein assembly is an essential process in biological systems, where proteins self-assemble into complex structures with diverse functions. Inspired by the exquisite control over protein assembly in nature, scientists have been exploring ways to design and assemble protein structures with precise control over their topologies and functions. One promising approach for achieving this goal is through metal coordination, which utilizes metal-binding motifs to mediate protein-protein interactions and assemble protein complexes with controlled stoichiometry and geometry. Metal coordination provides a modular and tunable approach for protein assembly and de novo structure design, where the metal ion acts as a molecular glue that holds the protein subunits together in a specific orientation. Metal-coordinated protein assemblies have shown great potential for developing functional metalloproteinase, novel biomaterials and integrated drug delivery systems. In this review, an overview of the recent advances in protein assemblies benefited from metal coordination is provided, focusing on various protein arrangements in different dimensions including protein oligomers, protein nanocage and higher-order protein architectures. Moreover, the key metal-binding motifs and strategies used to assemble protein structures with precise control over their properties are highlighted. The potential applications of metal-mediated protein assemblies in biotechnology and biomedicine are also discussed.

2.
J Agric Food Chem ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39262272

ABSTRACT

Because of the composition and structural complexity of crustacean shells, their color change mechanism during thermal processing remains unclear. This study identified and characterized two intrinsic protein components, hemocyanin (Lv-Hc) and ß-1,3-glucan-binding protein (Lv-BGBP) from Litopenaeus vannamei shrimp shells by a combination of ion-exchange chromatography, gel filtration, and mass spectrometry. It was found that a mixture of Lv-Hc, a gray protein, and Lv-BGBP (which is a natural astaxanthin-binding protein with a red color) is responsible for the brown color of fresh shrimp shells. Upon heating to 100 °C, the mixture of these proteins turned red, mimicking the color change observed in cooked shrimp shells. This transition is attributed to the extremely high thermal stability of Lv-BGBP, which has the ability to protect astaxanthin from thermal induced degradation. These findings provide significant insights into the molecular mechanism governing shrimp shell coloration, advancing our understanding of crustacean biochemistry.

3.
J Agric Food Chem ; 72(34): 18758-18773, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39161084

ABSTRACT

Hyperuricemia (HUA) is a metabolic disorder characterized by an imbalance in uric acid production and excretion, frequently leading to gout and various chronic conditions. Novel bioactive compounds offer effective alternatives for managing HUA, reducing side effects of traditional medications. Recent studies have highlighted the therapeutic potential of protein hydrolysates and peptides in managing HUA. This review focuses on preparing and applying protein hydrolysates to treat HUA and explores peptides for xanthine oxidase inhibition. Particularly, we discuss their origins, enzymatic approaches, and mechanisms of action in detail. The review provides an updated understanding of HUA pathogenesis, current pharmacological interventions, and methodologies for the preparation, purification, identification, and assessment of these compounds. Furthermore, to explore the application of protein hydrolysates and peptides in the food industry, we also address challenges and propose solutions related to the safety, bitterness, oral delivery, and the integration of artificial intelligence in peptide discovery. Bridging traditional pharmacological approaches and innovative dietary interventions, this study paves the way for future research and development in HUA management, contributing to the utilization of proteins from different food sources. In conclusion, protein hydrolysates and peptides show significant promise as safe agents and dietary interventions for preventing and treating HUA.


Subject(s)
Hyperuricemia , Peptides , Protein Hydrolysates , Protein Hydrolysates/chemistry , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Humans , Peptides/chemistry , Animals , Uric Acid/metabolism , Xanthine Oxidase/metabolism
4.
Small Methods ; : e2400915, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39205541

ABSTRACT

Establishing artificial photosynthesis systems in a simple but effective manner to mitigate the greenhouse effect and address the energy crisis remains challenging. The combination of photocatalysis technology with bioengineering is an emerging field with great potential to construct such artificial photosynthesis systems, but so far, it has barely been explored in this area. Herein, an artificial photocatalysis platform is constructed with high CO2 conversion and H2O splitting capability by integration of CdS QDs into the intra-subunit interface of H-type ferritin (Marsupenaeus japonicus), a natural ferroxidase through protein interface redesign. The crystal structure of the synthesized CdS QDs with engineered ferritin molecules as bio-templates confirmed the design at an atomic level. Notably, upon absorbing desirable visible light (≈420 nm), such a single CdS-ferritin hybrid molecule is able to selectively catalyze the reduction of CO2 into HCOOH (≈90%), meanwhile catalyzing the oxidation of H2O into O2 in an aqueous environment. The O2 production rate reached to 180 µmol g-1 h-1, and the HCOOH output hit almost 800 µmol g-1 h-1. This work advances the utilization of the four-helix bundle structure for crafting artificial photosynthesis systems, facilitating the seamless integration of bioengineering and photocatalysis technology.

5.
Int J Biol Macromol ; 269(Pt 1): 132041, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705315

ABSTRACT

Hemocyanin, an oxygen-transport protein, is widely distributed in the hemolymph of marine arthropods and mollusks, playing an important role in their physiological processes. Recently, hemocyanin has been recognized as a multifunctional glycoprotein involved in the immunological responses of aquatic invertebrates. Consequently, the link between hemocyanin functions and their potential applications has garnered increased attention. This review offers an integrated overview of hemocyanin's structure, physicochemical characteristics, and bioactivities to further promote the utilization of hemocyanin derived from marine products. Specifically, we review its implication in two aspects of food and aquaculture industries: quality and health. Hemocyanin's inducible phenoloxidase activity is thought to be an inducer of melanosis in crustaceans. New anti-melanosis agents targeted to hemocyanin need to be explored. The red-color change observed in shrimp shells is related to hemocyanin, affecting consumer preferences. Hemocyanin's adaptive modification in response to the aquatic environment is available as a biomarker. Additionally, hemocyanin is endowed with bioactivities encompassing anti-microbial, antiviral, and therapeutic activities. Hemocyanin is also a novel allergen and its allergenic features remain incompletely characterized.


Subject(s)
Hemocyanins , Hemocyanins/chemistry , Animals , Food Industry , Aquatic Organisms/chemistry , Humans
6.
J Agric Food Chem ; 72(21): 11885-11899, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747409

ABSTRACT

Actin, a multifunctional protein highly expressed in eukaryotes, is widely distributed throughout cells and serves as a crucial component of the cytoskeleton. Its presence is integral to maintaining cell morphology and participating in various biological processes. As an irreplaceable component of myofibrillar proteins, actin, including G-actin and F-actin, is highly related to food quality. Up to now, purification of actin at a moderate level remains to be overcome. In this paper, we have reviewed the structures and functions of actin, the methods to obtain actin, and the relationships between actin and food texture, color, and flavor. Moreover, actin finds applications in diverse fields such as food safety, bioengineering, and nanomaterials. Developing an actin preparation method at the industrial level will help promote its further applications in food science, nutrition, and safety.


Subject(s)
Actins , Food Quality , Actins/metabolism , Actins/chemistry , Animals , Humans
7.
J Agric Food Chem ; 72(14): 7629-7654, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38518374

ABSTRACT

Ferritin nanocages possess remarkable structural properties and biological functions, making them highly attractive for applications in functional materials and biomedicine. This comprehensive review presents an overview of the molecular characteristics, extraction and identification of ferritin, ferritin receptors, as well as the advancements in the directional design of high-order assemblies of ferritin and the applications based on its unique structural properties. Specifically, this Review focuses on the regulation of ferritin assembly from one to three dimensions, leveraging the symmetry of ferritin and modifications on key interfaces. Furthermore, it discusses targeted delivery of nutrition and drugs through facile loading and functional modification of ferritin. The aim of this Review is to inspire the design of micro/nano functional materials using ferritin and the development of nanodelivery vehicles for nutritional fortification and disease treatment.


Subject(s)
Ferritins , Ferritins/chemistry , Structure-Activity Relationship
8.
J Agric Food Chem ; 72(1): 810-818, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38134328

ABSTRACT

MnO2 is a nanozyme that inhibits the decomposition of hydrogen peroxide (H2O2) into a hydroxyl radical (OH•), thus preventing its conversion into reactive oxygen species (ROS). Oyster ferritin (GF1) is a macromolecular protein that provides uniform size and high stability and serves as an excellent template for the biomineralization of nanozyme. This study presents a unique method in which MnO2 is grown in situ in the GF1 cavity, yielding a structurally stable ferritin-based nanozyme (GF1@Mn). GF1@Mn is demonstrated to be stable at 80 °C and pH 4-8, exhibiting a higher affinity with H2O2 than many other catalases (CAT) with a Michaelis constant (Km) of 25.45 mmol/L. In vitro experiments have demonstrated the potential of GF1@Mn to enhance cell survival by reducing nitric oxide (NO) production while mitigating macrophage damage from ROS. The findings are essential to developing ferritin-based nanozymes and hold great potential for applications in functional food development.


Subject(s)
Crassostrea , Manganese , Animals , Catalase/metabolism , Manganese/metabolism , Ferritins/genetics , Ferritins/chemistry , Hydrogen Peroxide/chemistry , Reactive Oxygen Species/metabolism , Manganese Compounds , Oxides/metabolism
9.
Foods ; 12(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37959022

ABSTRACT

The structure and assembly properties of ferritin derived from aquatic products remain to be explored. Constructing diverse three-dimensional (3D) protein architectures with the same building blocks has important implications for nutrient delivery, medicine and materials science. Herein, ferritin from Asterias forbesii (AfFer) was prepared, and its crystal structure was resolved at 1.91 Å for the first time. Notably, different from the crystal structure of other reported ferritin, AfFer exhibited a BCT lattice arrangement in its crystals. Bioinspired by the crystal structure of AfFer, we described an effective approach for manufacturing 3D porous, crystalline nanoarchitectures by redesigning the shared protein interface involved in different 3D protein arrays. Based on this strategy, two 3D superlattices of body-centered tetragonal and simple cubicwere constructed with ferritin molecules as the building blocks. This study provided a potentially generalizable strategy for constructing different 3D protein-based crystalline biomaterials with the same building blocks.

10.
J Agric Food Chem ; 71(49): 19783-19790, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38033172

ABSTRACT

Transcriptome analysis had recognized enolase from shrimp Litopenaeus vannamei (L. vannamei), which is termed LvEnolase, as one of the allergens, but its amino acid sequence and protein structure have been lacking. In this study, natural LvEnolase was isolated from L. vannamei and characterized for the first time. The full-length cDNA sequence of LvEnolase was effectively cloned, which encoded 434 amino acid residues. The crystal structure of LvEnolase was successfully determined at a resolution of 2.5 Å by X-ray crystallography (PDB: 8UEL). Notably, it was observed that near the active center, a loop exists in either an open or closed state, and the open loop was associated with the product release phase. Furthermore, enzyme activity assays were conducted to validate the catalytic capabilities of purified LvEnolase. These findings significantly enhance our comprehension of the enolase family and provide valuable support for delving into the functions and characteristics of LvEnolase.


Subject(s)
Penaeidae , Phosphopyruvate Hydratase , Animals , Base Sequence , Phosphopyruvate Hydratase/genetics , Amino Acid Sequence , Penaeidae/genetics
11.
Adv Sci (Weinh) ; 10(35): e2305398, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37870198

ABSTRACT

Protein lattices that shift the structure and shape anisotropy in response to environmental cues are closely coupled to potential functionality. However, to design and construct shape-anisotropic protein arrays from the same building blocks in response to different external stimuli remains challenging. Here, by a combination of the multiple, symmetric interaction sites on the outer surface of protein nanocages and the tunable features of phenylalanine-phenylalanine interactions, a protein engineering approach is reported to construct a variety of superstructures with shape anisotropy, including 3D cubic, 2D hexagonal layered, and 1D rod-like crystalline protein nanocage arrays by using one single protein building block. Notably, the assembly of these crystalline protein arrays is reversible, which can be tuned by external stimuli (pH and ionic strength). The anisotropic morphologies of the fabricated macroscopic crystals can be correlated with the Å-to-nm scale protein arrangement details by crystallographic elucidation. These results enhance the understanding of the freedom offered by an object's symmetry and inter-object π-π stacking interactions for protein building blocks to assemble into direction- and shape-anisotropic biomaterials.


Subject(s)
Phenylalanine , Proteins , Anisotropy , Proteins/chemistry
12.
Foods ; 12(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37835256

ABSTRACT

Facing extreme pressure from an increasing population and climate degeneration, it is important to explore a green, safe and environmentally sustainable food source, especially for protein-enriched diets. Plant proteins have gained much attention in recent years, ascribing to their high nutritional value and environmental friendliness. In this review, we summarized recent advances in walnut protein with respect to its geographical distribution, structural and physiochemical properties and functional attributes. As a worldwide cultivated and largely consumptive crop, allergies and some physicochemical limitations have also led to a few concerns about walnut protein. Through comprehensive analysis and discussion, some strategies may be useful for future research, extraction and processing of walnut protein.

13.
Int J Biol Macromol ; 253(Pt 4): 126965, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37729985

ABSTRACT

Lead can induce oxidative stress and increase lipid peroxidation in biofilms, leading to liver damage and physiological dysfunction. This study aimed to investigate how oyster ferritin (GF1) attenuates lead-induced oxidative damage to the liver in vitro and in vivo. Animal experiments have confirmed that lead exposure can lead to oxidative damage and lipid peroxidation of the liver, and ferritin can regulate the activity of antioxidant enzymes and alleviate pathological changes in the liver. At the same time, oyster ferritin can regulate the expression of oxidative stress-related genes and reduce the expression of inflammasome-related genes. In addition, lead can induce apoptosis and mitophagy, leading to overproduction of reactive oxygen species and cell death, which can be effectively alleviated by oyster ferritin. Overall, this study provides a theoretical foundation for the use of oyster ferritin as a means of mitigating and preventing lead-induced damage.


Subject(s)
Crassostrea , Animals , Ferritins/metabolism , Mitophagy , Oxidative Stress , Liver/metabolism
14.
ACS Appl Mater Interfaces ; 15(36): 42304-42316, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37647580

ABSTRACT

It remains challenging to fabricate highly stretchable and adhesive hydrogel dressings for wound healing using simple, safe, and green methods. Herein, inspired by the main components of snail mucus, a fully physical double-network (DN) hydrogel dressing composed of fish gelatin (FGel) and glycyrrhizic acid (GL) was fabricated, in which FGel provided a protein scaffold to mimic snail mucus proteins, while GL mimicked the adhesion and bioactivity of snail mucus because of its abundant carboxyl and hydroxyl groups and intrinsic immunomodulatory activity. As expected, the obtained FGel/GL hydrogel dressings exhibited outstanding mechanical and adhesive performances (flexibility, stretchability, adhesive ability, and removability), high transparency, and good antifreezing properties. More importantly, they also possessed excellent biocompatibility, cell migration, and angiogenesis ability in vitro experiments. Finally, animal experiments in vivo indicated that the FGel/GL hydrogel dressings significantly promoted full-thickness wound healing, including promoting granulation tissue formation, collagen deposition, and skin angiogenesis and inhibiting the inflammatory response. All these findings indicated that the FGel/GL hydrogel dressings have great potential for applications in the clinical treatment of wound healing.


Subject(s)
Gelatin , Hydrogels , Animals , Gelatin/pharmacology , Hydrogels/pharmacology , Glycyrrhizic Acid/pharmacology , Wound Healing , Bandages , Fishes
15.
Free Radic Biol Med ; 204: 28-37, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37105421

ABSTRACT

The conversion of toxic Fe2+ into non-toxic Fe3+ stored in the inner cavity of ferritin nanocage could effectively reduce the occurrence of the Fenton reaction and inhibit the formation of harmful reactive oxygen species (ROS). In this study, we reveal that oyster ferritin (GF1) can rely on its high catalytic activity (7.7 times that of rHuHF) and high binding ability of Fe2+ (9.1 times that of rHuHF) to reduce the precursors of Fenton reaction, thus inhibiting the occurrence of Fenton reaction and slowing down reactive oxygen species-mediated inflammation. The above significant advantage of GF1 can be attributed to the Asp at the position 120th, which could increase the negatively charged area of three-fold channels from 37.8% (rHuHF) to 67.8% and then enhance its oxidation rate and ability of GF1. The findings are of great value in advancing novel nanoparticle drug design based on crystalline structure.


Subject(s)
Ferritins , Ostreidae , Animals , Ferritins/metabolism , Iron/metabolism , Reactive Oxygen Species/metabolism , Oxidation-Reduction , Ostreidae/metabolism , Hydrogen Peroxide/metabolism
16.
Crit Rev Food Sci Nutr ; 63(9): 1277-1292, 2023.
Article in English | MEDLINE | ID: mdl-34382897

ABSTRACT

As the second most abundant trace element in the human body, zinc nutrition is constantly a hot topic. More than one-third population is suffering zinc deficiency, which results in various types of diseases or nutritional deficiencies. Traditional ways of zinc supplementation seem with low absorption rates and significant side effects. Zinc supplements with dietary components are easily accessible and improve zinc utilization rate significantly. Also, mechanisms of maintaining zinc homeostasis are of broad interest. The present review focuses on zinc nutrition in human health in inductive methods. Mainly elaborate on different diseases relating to zinc disorder, highlighting the impact on the immune system and the recent COVID-19. Then raise food-derived zinc-binding compounds, including protein, peptide, polysaccharide, and polyphenol, and also analyze their possibilities to serve as zinc complementary. Finally, illustrate the way to maintain zinc homeostasis and the corresponding mechanisms. The review provides data information for maintaining zinc homeostasis with the food-derived matrix.


Subject(s)
COVID-19 , Malnutrition , Humans , Zinc , COVID-19/prevention & control , Diet , Dietary Supplements , Nutritional Status
17.
Food Chem ; 404(Pt B): 134586, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36323011

ABSTRACT

Ferritin, one of the storage forms of iron, which widely exists in all living organisms and shows its potential as functional nanomaterial. In this study, Fe2+ were added to oyster ferritin (GF1) in vitro until reached experimental saturation state. The structure characterization and monodisperse morphology of ferritin were showed that the protein structure of ferritin did not change significantly after adding Fe2+ and GF1 with 1000 Fe2+ (GF1-1000 Fe2+) was selected for subsequent experiments. The storage stability results showed that 11.27 % of the protein remained cage-like structure when GF1-1000 Fe2+ was stored at 4 °C for 12 days. The thermal treatment results showed that GF1-1000 Fe2+ still maintained certain structure and activity at 80 °C, and 82.8 % of Fe2+ was still retained at 80 °C. These experimental results may provide a theoretical basis for the development of novel iron supplement that are non-toxic and highly stable.


Subject(s)
Crassostrea , Ferritins , Animals , Ferritins/metabolism , Crassostrea/metabolism , Iron/chemistry
18.
Food Chem ; 402: 134343, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36174351

ABSTRACT

The pigment astaxanthin, one of the carotenoids, is regarded as a functional factor with various biological activities, widely applied in feed, nutraceutical, and cosmetic industries. However, its low stability and poor water solubility limit its application. Examples in nature suggest that binding to proteins is a simple and effective method to improve the stability and bioavailability of astaxanthin. Proteins from algae, fish, and crustaceans have all been demonstrated to have astaxanthin-binding capacity. Inspired by nature, artificial astaxanthin-protein systems have been established in foods. Binding to proteins could bring aquatic species various colors, and changes in the conformation of astaxanthin after binding to proteins leads to color changes. The review innovatively summarizes multiple examples of proteins as means of protecting astaxanthin, giving a reference for exploring and analyzing pigment-protein interactions and providing a strategy for carotenoids stabilization and color regulation, which is beneficial to the broader and deeper applications of carotenoids.


Subject(s)
Carotenoids , Xanthophylls , Animals , Carotenoids/chemistry , Solubility , Water , Xanthophylls/chemistry
19.
J Mater Chem B ; 10(48): 9968-9973, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36472186

ABSTRACT

Taking inspiration from Nature, we have constructed a two-compartment system based on 3D ferritin nanocage superlattices, the self-assembly behavior of which can be spatiotemporally controlled using two designed switches. One pH switch regulates the assembly of the ferritin subunit into its shell-like structure, whereas the other metal switch is responsible for assembly of the 3D superlattices from ferritin nanocages as building blocks. Consequently, this system holds great promise for the hierarchical encapsulation and release of two different cargo molecules.


Subject(s)
Ferritins , Ferritins/chemistry
20.
Foods ; 11(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36359995

ABSTRACT

As a natural phenolic compound, carvacrol has attracted much attention due to its excellent antibacterial and antioxidant activities. However, its application is limited due to its instability, such as easy volatilization, easy oxidation, etc. Protein-polysaccharide interactions provide strategies for improving their stability issues. In this study, the plant-based carvacrol microcapsules via complex coacervation between walnut meal protein isolate (WMPI) and gum Arabic (GA) has been fabricated and characterized. The formation conditions of WMPI-GA coacervates were determined by some parameters, such as pH, zeta-potential, and turbidity. The optimum preparation conditions were achieved at pH 4.0 with a WMPI-to-GA ratio of 6:1 (w/w). The mean particle size, loading capacity (LC), and encapsulation efficiency (EE) of the microcapsules were 43.21 µm, 26.37%, and 89.87%, respectively. Fourier transform infrared spectroscopy (FT-IR) and fluorescence microscopy further confirmed the successful microencapsulation of carvacrol. The microencapsulation of carvacrol improved the thermal stability of the free carvacrol. The swelling capacity results indicated that it could resist gastric acid, and facilitate its intestinal absorption. Meanwhile, the carvacrol molecules trapped within the microcapsules could be continuously released in a concentration-dependent manner. Furthermore, the microcapsules presented good antioxidant activity and antibacterial activity against the Gram-negative (E. coli) and the Gram-positive (S. aureus) bacteria. These results indicated that the obtained carvacrol microcapsules have a potential application value as a food preservative in the food industry.

SELECTION OF CITATIONS
SEARCH DETAIL