Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater Eng ; 35(3): 303-321, 2024.
Article in English | MEDLINE | ID: mdl-38517766

ABSTRACT

BACKGROUND: The clinical outcomes of bipolar radiofrequency (RF) lipolysis, a prevalent non-invasive fat reduction procedure, hinge on the delicate balance between effective lipolysis and patient safety, with skin overheating and subsequent tissue damage as primary concerns. OBJECTIVE: This study aimed to investigate a novel bipolar radiofrequency lipolysis technique, safeguarding the skin through an innovative PID temperature control algorithm. METHODS: Utilizing COMSOL Multiphysics simulation software, a two-dimensional fat and skin tissue model was established, simulating various PID temperature control schemes. The crux of the simulation involved a comparative analysis of different PID temperatures at 45 °C, 50 °C, and 55 °C and constant power strategies, assessing their implications on skin temperature. Concurrently, a custom bipolar radiofrequency lipolysis device was developed, with ex vivo experiments conducted using porcine tissue for empirical validation. RESULTS: The findings indicated that with PID settings of Kp = 7, Ki = 2, and Kd = 0, and skin temperature control at 45 °C or 50 °C, the innovative PID-based epidermal temperature control strategy successfully maintained the epidermal temperature within a safe range. This maintenance was achieved without compromising the effectiveness of RF lipolysis, significantly reducing the risk of thermal damage to the skin layers. CONCLUSION: Our research confirms the substantial practical utility of this advanced PID-based bipolar RF lipolysis technique in clinical aesthetic procedures, enhancing patient safety during adipose tissue ablation therapies.


Subject(s)
Algorithms , Lipolysis , Skin Temperature , Swine , Animals , Adipose Tissue , Humans , Computer Simulation , Skin/radiation effects , Models, Biological , Lipectomy/methods , Lipectomy/instrumentation , Radiofrequency Ablation/methods
2.
Cardiovasc Eng Technol ; 15(1): 22-38, 2024 02.
Article in English | MEDLINE | ID: mdl-37919538

ABSTRACT

PURPOSE: Pulsed-field ablation (PFA) has attracted attention for the treatment of atrial fibrillation. This study aimed to further explore the relationship between the transmembrane voltage, pore radius and the intensity and duration of pulsed electric fields, which are closely related to the formation of irreversible electroporation. The different mechanisms of microsecond and nanosecond pulses acting on cardiomyocyte cellular and nuclear membranes were studied. METHODS: A 3-D cardiomyocyte model with a nucleus was constructed to simulate the process of electroporation in cells under an electric field. Cell membrane electroporation was used to simulate the effect of different pulse parameters on the process of electroporation. RESULTS: Under a single pulse with a field strength of 1 kV/cm and width of 100 µs, the transmembrane potential (TMP) of the cell membrane reached 1.33 V, and the pore density and conductivity increased rapidly. The maximum pore radius of the cell membrane was 43.4 nm, and the electroporation area accounted for 4.6% of the total cell membrane area. The number of pores was positively correlated with the electric field intensity when the cell was exposed to electric fields of 0.5 to 6 kV/cm. Under a nanosecond pulse, the TMP of the nuclear and cell membranes exceeded 1 V after exposure to electric fields with strengths of 4 and 5 kV/cm, respectively. CONCLUSION: This study simulated the electroporation process of cardiomyocyte, and provides a basis for the selection of parameters for the application of PFA for application toward arrhythmias.


Subject(s)
Electroporation , Myocytes, Cardiac , Finite Element Analysis , Electroporation/methods , Cell Membrane/metabolism , Membrane Potentials
3.
J Cardiovasc Dev Dis ; 10(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36826552

ABSTRACT

The non-thermal effects are considered one of the prominent advantages of pulsed field ablation (PFA). However, at higher PFA doses, the temperature rise in the tissue during PFA may exceed the thermal damage threshold, at which time intracardiac pulsatile blood flow plays a crucial role in suppressing this temperature rise. This study aims to compare the effect of heat dissipation of the different methods in simulating the pulsatile blood flow during PFA. This study first constructed an anatomy-based left atrium (LA) model and then applied the convective heat transfer (CHT) method and the computational fluid dynamics (CFD) method to the model, respectively, and the thermal convective coefficients used in the CHT method are 984 (W/m2*K) (blood-myocardium interface) and 4372 (W/m2*K) (blood-catheter interface), respectively. Then, it compared the effect of the above two methods on the maximum temperature of myocardium and blood, as well as the myocardial ablation volumes caused by irreversible electroporation (IRE) and hyperthermia under different PFA parameters. Compared with the CFD method, the CHT method underestimates the maximum temperature of myocardium and blood; the differences in the maximum temperature of myocardium and blood between the two methods at the end of the last pulse are significant (>1 °C), and the differences in the maximum temperature of blood at the end of the last pulse interval are significant (>1 °C) only at a pulse amplitude greater than 1000 V or pulse number greater than 10. Under the same pulse amplitude and different heat dissipation methods, the IRE ablation volumes are the same. Compared with the CFD method, the CHT method underestimates the hyperthermia ablation volume; the differences in the hyperthermia ablation volume are significant (>1 mm3) only at a pulse amplitude greater than 1000 V, a pulse interval of 250 ms, or a pulse number greater than 10. Additionally, the hyperthermia ablation isosurfaces are completely wrapped by the IRE ablation isosurfaces in the myocardium. Thus, during PFA, compared with the CFD method, the CHT method cannot accurately simulate the maximum myocardial temperature; however, except at the above PFA parameters, the CHT method can accurately simulate the maximum blood temperature and the myocardial ablation volume caused by IRE and hyperthermia. Additionally, within the range of the PFA parameters used in this study, the temperature rise during PFA may not lead to the appearance of additional hyperthermia ablation areas beyond the IRE ablation area in the myocardium.

4.
J Cardiovasc Dev Dis ; 9(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36286271

ABSTRACT

Pulsed field ablation (PFA) is a promising new ablation modality for the treatment of atrial fibrillation (AF); however, the effect of fiber orientation on the ablation characteristics of PFA in AF treatment is still unclear, which is likely an essential factor in influencing the ablation characteristics. This study constructed an anatomy-based left atrium (LA) model incorporating fiber orientation and selected various electrical conductivity and ablation targets to investigate the effect of anisotropic electrical conductivity (AC), compared with isotropic electrical conductivity (IC), on the ablation characteristics of PFA in AF treatment. The results show that the percentage differences in the size of the surface ablation area between AC and IC are greater than 73.71%; the maximum difference in the size of the ablation isosurface between AC and IC at different locations in the atrial wall is 3.65 mm (X-axis), 3.65 mm (Z-axis), and 4.03 mm (X-axis), respectively; and the percentage differences in the size of the ablation volume are greater than 6.9%. Under the condition of the pulse, the amplitude is 1000 V, the total PFA duration is 1 s, and the pulse train interval is 198.4 ms; the differences in the temperature increase between AC and IC in LA are less than 2.46 °C. Hence, this study suggests that in further exploration of the computational study of PFA in AF treatment using the same or similar conditions as those used here (myocardial electrical conductivity, pulse parameters, and electric field intensity damage threshold), to obtain more accurate computational results, it is necessary to adopt AC rather than IC to investigate the size of the surface ablation area, the size of the ablation isosurface, or the size of the ablation volume generated by PFA in LA. Moreover, if only investigating the temperature increase generated by PFA in LA, adopting IC instead of AC for simplifying the model construction process is reasonable.

5.
J Cardiovasc Dev Dis ; 9(4)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35448071

ABSTRACT

BACKGROUND: At present, the effects of discharge modes of multielectrode catheters on the distribution of pulsed electric fields have not been completely clarified. Therefore, the control of the distribution of the pulsed electric field by selecting the discharge mode remains one of the key technical problems to be solved. METHODS: We constructed a model including myocardium, blood, and a flower catheter. Subsequently, by setting different positive and ground electrodes, we simulated the electric field distribution in the myocardium of four discharge modes (A, B, C, and D) before and after the catheter rotation and analyzed their mechanisms. RESULTS: Modes B, C, and D formed a continuous circumferential ablation lesion without the rotation of the catheter, with depths of 1.6 mm, 2.7 mm, and 0.7 mm, respectively. After the catheter rotation, the four modes could form a continuous circumferential ablation lesion with widths of 10.8 mm, 10.6 mm, 11.8 mm, and 11.5 mm, respectively, and depths of 5.2 mm, 2.7 mm, 4.7 mm, and 4.0 mm, respectively. CONCLUSIONS: The discharge mode directly affects the electric field distribution in the myocardium. Our results can help improve PFA procedures and provide enlightenment for the design of the discharge mode with multielectrode catheters.

6.
Lasers Surg Med ; 52(10): 1020-1031, 2020 12.
Article in English | MEDLINE | ID: mdl-32342532

ABSTRACT

BACKGROUND AND OBJECTIVES: The finite element method was used, and experiments were performed to analyze the effect of different electrode spacings and power combinations on the electrical and thermal aspects of biological tissues during bipolar radiofrequency (RF) fat dissolution. Through these efforts, this study also attempted to develop a reasonable electrode spacing and power combination that can achieve fat dissolution effects, the RF energy of which will not thermally damage the tissue. STUDY DESIGN/MATERIALS AND METHODS: COMSOL was adopted to conduct a finite element analysis for bio-thermoelectric coupling, and a two-dimensional time-domain model of biological tissue was built. A self-developed single-channel bipolar RF device was employed to load RF energy on the ex vivo porcine abdominal tissue. The thermal characteristics of the tissue were characterized and analyzed with a thermal imager and thermocouple probes. RESULTS: Under a power of 5 W combined with the electrode spacings of 1, 2, and 3 cm, the temperature in the tissue could not reach that required for fat dissolution. Under a power of 15 W combined with the electrode spacings of 1, 2, and 3 cm, the RF energy would thermally damage part of the skin areas. Besides this, the combination of a power of 10 W and the electrode spacing of 1 cm would thermally damage the skin areas. The combination of a power of 10 W and the electrode spacing of 2 or 3 cm made part of the fat layer of the tissue satisfy the requirements of fat dissolution, and the fat dissolution area caused by the former was 118% larger than that of the latter; in the meantime, no heat damage to the skin layer was found. CONCLUSION: Different electrode spacings and power combinations significantly affect the electrical and thermal properties of bipolar RF energy loaded on biological tissue, a reasonable electrode spacing and power combination is one of the critical factors leading to the success of bipolar RF fat dissolution. Lasers Surg. Med. © 2020 Wiley Periodicals, Inc.


Subject(s)
Catheter Ablation , Animals , Electrodes , Finite Element Analysis , Hot Temperature , Liver/surgery , Radio Waves , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...