Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 30(37): 87215-87227, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37420156

ABSTRACT

Low biological hydrogen (bioH2) production due to non-optimal metabolic pathways occurs frequently. In this work, magnetic nitrogen-doped activated carbon (MNAC) was prepared and added into the inoculated sludge with glucose as substrate to enhance hydrogen (H2) yield by mesophilic dark fermentation (DF). The highest H2 yield appeared in 400 mg/L AC (252.8 mL/g glucose) and 600 mg/L MNAC group (304.8 mL/g glucose), which were 26.02% and 51.94% higher than that of 0 mg/L MNAC group (200.6 mL/g glucose). The addition of MNAC allowed for efficient enrichment of Firmicutes and Clostridium-sensu-stricto-1, accelerating the metabolic pathway shifted towards butyrate type. The Fe ions released by MNAC facilitated electron transfer and favored the reduction of ferredoxin (Fd), thereby obtaining more bioH2. Finally, the generation of [Fe-Fe] hydrogenase and cellular components of H2-producing microbes (HPM) during homeostasis was discussed to understand on the use of MNAC in DF system.


Subject(s)
Charcoal , Hydrogen , Fermentation , Hydrogen/metabolism , Glucose , Magnetic Phenomena , Bioreactors
2.
ACS Omega ; 7(45): 41594-41605, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36406540

ABSTRACT

The positive effects of metal oxide nanoparticles (NPs) on dark fermentation (DF) for biohydrogen synthesis have been increased, and the mechanism still needs to be further revealed. In this study, nickel-cobalt oxide (NiCo2O4) NPs were prepared to increase H2 yield via DF. The highest (259.67 mL/g glucose) and the lowest (188.14 mL/g glucose) yields were achieved at 400 and 800 mg/L NiCo2O4 NPs added, respectively, with their corresponding 33.97% increase and 2.93% decrease compared with the control yield (193.82 mL/g glucose). Meanwhile, the microbial community further confirmed that NiCo2O4 NPs increased the abundance of the dominant H2-producing Clostridium sensu stricto 1 by 23.05%. The gene prediction also showed that NiCo2O4 NPs increased the abundance of genes encoding the rate-limiting enzyme pyruvate kinase in glycolysis, thus increasing the substrate conversion. Moreover, the gene abundance of key enzymes directly related to H2 evolution was also increased at different levels.

3.
Water Sci Technol ; 86(7): 1835-1847, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36240315

ABSTRACT

Broadening the light absorption range and suppressing the carrier complexation are the two keys to enhance the photocatalytic activity. In this work, a novel two-dimensional (2D) photocatalyst was successfully prepared by modified hydrothermal method and applied in tetracycline (TC) degradation. The degradation rate of CD(Cu)-Ni-MOL for TC reached 93.5% within 60 min under the visible light condition. The improved photocatalytic performance of CD(Cu)-Ni-MOL was attributed to the constructed 2D layered structure and the special properties of CD(Cu). The doped Cu in carbon dots (CDs) exhibited excellent photocatalytic performance among the elements of Cu, Zn, Ni, Co and Fe. The order of photocatalytic performance improvement was Cu > Zn > Ni > Co > Fe. In addition, a possible degradation pathway for TC was proposed. This work confirms the great potential of CD(Cu)-Ni-MOL as a highly efficient photocatalyst in removing tetracycline pollutants in water.


Subject(s)
Environmental Pollutants , Quantum Dots , Anti-Bacterial Agents/chemistry , Carbon , Catalysis , Copper/chemistry , Light , Quantum Dots/chemistry , Tetracycline/chemistry , Water
4.
Bioresour Technol ; 361: 127676, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35872267

ABSTRACT

Dark fermentation (DF) is a green hydrogen (H2) production process, but it is far below the theoretical H2 yield. In this study, calcium ferrite nanoparticles (CaFe2O4 NPs) were produced to augment H2 yield via DF. The highest H2 yield of 250.1 ± 6.5 mL/g glucose was achieved at 100 mg/L CaFe2O4 NPs. Furtherincreasein CaFe2O4 NPs above 100 mg/L, such as 600 mg/L, would slightly lower H2 yield to 208.6 ± 2.6 mL/g glucose. The CaFe2O4 NPs in DF system released calcium and iron ions, promoting granular sludge formation andDF microbial activity. Soluble metabolites revealed that butyric acid was raised by CaFe2O4 NPs, which indicated the improved metabolic pathway for more H2. Microbial structure composition further illustrated that CaFe2O4 NPs could increase the abundance of dominant microbial populations, with the supremacy of Firmicutes up to 71.22 % in the bioH2 evolution group augmented with 100 mg/L CaFe2O4 NPs.


Subject(s)
Hydrogen , Nanoparticles , Calcium Compounds , Fermentation , Ferric Compounds , Glucose , Hydrogen/metabolism
5.
RSC Adv ; 12(27): 17285-17293, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35765444

ABSTRACT

The combined catalytic system of Electro-Fenton (E-Fenton) and Phanerochaete chrysosporium (P. chrysosporium) was constructed in liquid medium with additional potential to overcome the limitations of lignin degradation by white rot fungi alone. To further understand the mechanism of synergistic catalysis, we optimized the optimum potential for lignin catalysis by P. chrysosporium and built synergistic versus separate catalyses. After 48 h of incubation, the optimum growth environment and the highest lignin degradation rate (43.8%) of P. chrysosporium were achieved when 4 V was applied. After 96 h, the lignin degradation rate of the cocatalytic system was 62% (E-Fenton catalysis alone 22% and P. chrysosporium catalysis alone 19%), the pH of the growth maintenance system of P. chrysosporium was approximately 3.5, and the lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) enzyme activities, were significantly better than those of the control. The qPCR results indicated that the expression of both MnP and LiP genes was higher in the cocatalytic system. Meanwhile, FTIR and 2D-HSQC NMR confirmed that the synergistic catalysis was effective in breaking the aromatic functional groups and the side chains of the aliphatic region of lignin. This study showed that the synergistic catalytic process of electro-Fenton and P. chrysosporium was highly efficient in the degradation of lignin. In addition, the synergetic system is simple to operate, economical and green, and has good prospects for industrial application.

6.
ACS Omega ; 7(12): 10550-10558, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35382266

ABSTRACT

Hydroxyapatite (HA) had the effect of maintaining the pH balance of the reaction system and promoting enzyme activity. In this work, hydroxyapatite was synthesized by coprecipitation and characterized for biohydrogen (bioH2) production from glucose. The highest bioH2 yield obtained was 182.33 ± 2.41 mL/g glucose, amended with an optimal dosage of 400 mg/L HA, which was a 55.80% higher bioH2 yield compared with the control group without any addition. The results indicated that HA facilitated the deterioration of organic substances and increased the concentration of soluble microbial products (SMPs). Microbial community analysis revealed that HA significantly increased the abundance of Firmicutes from 35.27% (0 mg/L, HA) to 76.41% (400 mg/L, HA), which played an essential role in bioH2 generation. In particular, the abundance of Clostridium sensu stricto 1 increased from 15.33% (0 mg/L HA) to 45.17% (400 mg/L HA) and became the dominant bacteria. The results also indicated that HA likely improves bioH2 production from organic wastewater in practice.

7.
Bioresour Technol ; 351: 127027, 2022 May.
Article in English | MEDLINE | ID: mdl-35314310

ABSTRACT

Low hydrogen (H2) yield via dark fermentation often occurs, being mainly due to H2 generation pathway shift. In this study, lanthanum-iron oxide nanoparticles (LaFeO3 NPs) were prepared to investigate their effects on bioH2 production. The highest H2 yield of 289.8 mL/g glucose was found at 100 mg/L of LaFeO3, being 47.6% higher than that from the control (196.3 mL/g glucose). The relative abundance of Firmicutes increased from 54.2% to 67.5%. The large specific surface area of LaFeO3 provided sufficient sites for the colonization of Firmicutes and increased the bacterial access to nutrients. Additionally, the La3+ gradually released from LaFeO3 NPs raised microbial transmembrane transport capacity, promoting glycolytic efficiency and Fe availability, thereby increasing hydrogenase content, and shifting the bioH2 evolution to butyrate pathway for more H2. This provides the novelty for biochemical utilization of La and new insights into the improved H2 yield amended with LaFeO3.


Subject(s)
Hydrogen , Lanthanum , Fermentation , Glucose , Hydrogen/metabolism , Magnetic Iron Oxide Nanoparticles
8.
Bioresour Technol ; 351: 126998, 2022 May.
Article in English | MEDLINE | ID: mdl-35292385

ABSTRACT

The effect of 50 mg/L nitrogen-doped graphene (N-G) on anammox microbial guild was studied by metagenomics in this paper. The continuous experiment results showed the average NRE improved by 17.57% with N-G addition. The metagenomic analysis revealed N-G significantly increased the relative abundance of dominant AnAOB (Candidatus Kuenenia) from 18.10% to 28.30%. And the FISH assay further manifested N-G promoted the growth of AnAOB biomass. Meanwhile, metagenomics indicated that N-G enriched the abundance of genes (Hzs, Hdh, NosZ, NorB, NirK, NirS and NrfA) involved in nitrogen metabolism to varying degrees. Furthermore, N-G not only improved the microbial functionality in terms of "Metabolism", but markedly upregulated the abundance of c-di-GMP synthesized genes and genes related to quinolone signal molecule, which contributed to more EPS content and better sludge settleability. In brief, this study provided a novel perspective for anammox biomass enrichment, which may be valuable for practical engineering applications of anammox.


Subject(s)
Graphite , Nitrogen , Anaerobic Ammonia Oxidation , Anaerobiosis , Bioreactors , Denitrification , Metagenomics , Nitrogen/metabolism , Oxidation-Reduction , Sewage
9.
Bioresour Technol ; 347: 126689, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35007730

ABSTRACT

Some inhibition of biomethane (bioCH4) production system can be observed, which is due to the propionic acid generation from lactic acid degradation. In this work, the three cobalt ferrate-based nanoparticles (NPs) such as CoFe2O4, CoAl0.2Fe1.8O4 and CoCu0.2Fe1.8O4 were synthesized to promote the bioCH4 evolution from lactic acid. The CH4 yields from the CoAl0.2Fe1.8O4, CoCu0.2Fe1.8O4 and CoFe2O4 groups at 300 mg/L of NPs were 431.52, 392.12 and 396.6 mL/g lactic acid, respectively. Moreover, the highest CH4 yield was 34.15% higher than that of the control reactor (321.67 mL/g lactic acid) without NPs. The three NPs accelerated lactic acid biodegradation and propionic acid conversion, thus obtaining more CH4. Surprisingly, microbial structure revealed that CoAl0.2Fe1.8O4 increased the abundance of Bacteroidetes_vadinHA17 to 16.6%, promoting the conversion from propionic acid to acetic acid. Meanwhile, the abundance of Methanobacterium in archaeal community from CoAl0.2Fe1.8O4 group rose from 45.81% to 68.45%, which facilitated bioCH4 production.


Subject(s)
Cobalt , Nanoparticles , Anaerobiosis , Bioreactors , Iron , Lactic Acid , Methane
10.
Chemosphere ; 291(Pt 1): 132743, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34743801

ABSTRACT

To investigate the mechanism of bimetallic 2-dimension (2D) catalyst existing in the current photocatalytic degradation process, the tetracycline (TC) degradation performance and mechanism by bimetallic 2D photocatalyst was studied extensively. Nickel metal-organic layer (Ni-MOL) and In2Se3, a typical 2D semiconductor photocatalyst, shows great potential for photocatalytic degradation of TC. Herein, an In2Se3 assisted Ni-MOL composite bimetallic photocatalyst was assembled, of which could obtain the degradation rate of 96.4% within 90 min for TC under visible light. Ni-MOL was the main active site for TC degradation by photo-induced holes which located at the Ni atom active site during the photocatalytic process. The role of In2Se3 and the element of Ti in Ni-MOL was to assist Ni-MOL by providing more photo-induced carriers and inhibiting carrier recombination. This work makes a contribution to the application of 2D bimetallic photocatalytic in TC degradation.


Subject(s)
Nickel , Titanium , Anti-Bacterial Agents , Catalysis , Light , Tetracycline
11.
Bioresour Technol ; 343: 126078, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34606925

ABSTRACT

Two various materials, copper and aluminum doped cobalt ferrite nanoparticles (NPs) were fabricated for investigating their effects of addition amounts on hydrogen (H2) synthesis and process stability. CoCu0.2Fe1.8O4NPs enhanced H2 production more than CoAl0.2Fe1.8O4 NPs under same condition. The highest H2 yield of 212.25 ml/g glucose was found at optimal dosage of 300 mg/L CoCu0.2Fe1.8O4 NPs, revealing the increases of 43.17% and 6.67% compared with the control without NPs and 300 mg/L CoAl0.2Fe1.8O4 NPs groups, respectively. NPs level of more than 400 mg/L inhibited H2 generation. Further investigations illustrated that CoCu0.2Fe1.8O4 NPs were mainly distributed on extracellular polymer substance while CoAl0.2Fe1.8O4 NPs were mostly enriched on cell membrane, which facilitated electron transfer behavior. Community structure composition demonstrated that CoCu0.2Fe1.8O4 and CoAl0.2Fe1.8O4 separately caused a 9.67% and 9.03% increase in Clostridium sensu stricto 1 compared with the control reactor without NPs exposure.


Subject(s)
Copper , Nanoparticles , Aluminum , Cobalt , Hydrogen , Iron
12.
Bioresour Technol ; 343: 126141, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34655780

ABSTRACT

In the present study, a dark fermentation system inoculated with mixed culture bacteria (MCB) was developed using prepared alkali-based magnetic nanosheets (AMNSs) to facilitate biohydrogen (BioH2) production. The highest BioH2 yields of 232.8 ± 8.5 and 150.3 ± 4.8 mL/g glucose were observed at 100 (mesophilic condition) and 400 (thermophilic condition) mg/L AMNSs groups, which were 65.4% and 43.3%, respectively, above the 0 mg/L AMNSs group. The fermentation pathway revealed that AMNSs enhanced the butyrate-type metabolic pathway and the corresponding nicotinamide adenine dinucleotides (NADHand NAD+) ratio, and hydrogenase activity was enhanced in mesophilic fermentation. The interaction of AMNSs and MCB suggested that AMNSs could assist in electron transfer and that the released metal elements might be responsible for elevated hydrogenase activity. AMNSs also promoted the evolution of the dominant microbial community and altered the content of extracellular polymers, leading to increased production of BioH2.


Subject(s)
Hydrogen , Microbiota , Alkalies , Fermentation , Magnetic Phenomena
13.
ACS Omega ; 6(47): 31689-31698, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34869993

ABSTRACT

In order to improve the degradation efficiency of lignocellulose while increasing the yield of mushrooms, white rot fungi treatment (Pleurotus ostreatus, Pleurotus eryngii, and Pleurotus geesteranus) combined with ammonia fiber expansion was proposed as a method for treating lignocellulose (Pennisetum sinese, salix chips, and pine chips) for mushroom cultivation. Compared with treatment using either ammonia fiber expansion or white rot fungus, the combined treatment significantly improved lignocellulose degradation rate by 10-20% and reduced the time required significantly. Among them, P. geesteranus was the most effective bacterium for the combined treatment of lignocellulose. Ammonia fiber expansion-treated lignocellulose contributed to mycelial growth and increased the activity of three lignin hydrolase enzymes (laccase, manganese peroxidase, and lignin peroxidase) and mushroom yield. The mushroom yield was increased by 44.6%. The combined treatment method proposed in our study improves lignocellulose resource utilization and is therefore useful in the treatment of agricultural solid organic waste.

14.
ACS Omega ; 6(32): 21033-21042, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34423211

ABSTRACT

Enhanced interspecies electron transfer (IET) among symbiotic microorganisms is an effective method to increase the rate of methane (CH4) production in anaerobic digestion. Direct interspecies electron transfer (DIET), which does not involve dissolved redox media, is considered an alternative and superior method to enhance methane production by interspecific hydrogen (H2) transfer (IHT). In this study, nickel foam was built into a semicontinuous anaerobic reactor to investigate its effect on the metabolism of propionate and butyrate. Both increased the average yield of CH4 in anaerobic digestion by 18.1 and 15.9%, respectively. Analysis of bacterial and archaeal communities showed that the addition of nickel foam could increase the relative abundance of microbial communities involved in DIET and could increase the diversity of microorganisms in the reactor. Moreover, the anaerobic digestion performance of the nickel foam reactor was good at high hydrogen partial pressure.

15.
Bioresour Technol ; 329: 124853, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33621929

ABSTRACT

In this work, nickel ferrite nanoparticles (NiFe2O4 NPs) was prepared to improve hydrogen (H2) production by dark fermentation. Moderate amounts (50-200 mg/L) promoted H2 generation, while excess NiFe2O4 NPs (over 400 mg/L) lowered H2 productivity. The highest H2 yields of 222 and 130 mL/g glucose were obtained in the 100 mg/L (37 °C) and 200 mg/L NiFe2O4 NPs (55 °C) groups, respectively, and the values were 38.6% and 28.3% higher than those in the control groups (37 °C and 55 °C). Soluble metabolites showed that NiFe2O4 NPs enhanced the butyrate pathway, corresponding to the increased abundance of Clostridium butyricum in mesophilic fermentation. The endocytosis of NiFe2O4 NPs indicated that the released iron and nickel favored ferredoxin and hydrogenase synthesis and activity and that NiFe2O4 NPs could act as carriers in intracellular electron transfer. The NPs also optimized microbial community structure and increased the levels of extracellular polymeric substances, leading to increased H2 production.


Subject(s)
Nanoparticles , Nickel , Dietary Supplements , Fermentation , Ferric Compounds , Hydrogen
16.
Water Sci Technol ; 83(2): 449-462, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33504707

ABSTRACT

Poly(acrylamide) grafted and glutaraldehyde-crosslinked alginic acid nano-magnetic adsorbent (AAMA) was prepared by selecting Cd2+ as a template ion. Scanning electron microscope (SEM), thermo-gravimetric analyzer (TGA), vibrating sample magnetometer (VSM) and infrared spectroscopy (IR) were used to characterize the morphology and structure of AAMA. The adsorption of AAMA for different metal ions was compared and the impact of various factors for adsorption of Cd2+ was systematically investigated. These results suggested that the AAMA was the aggregates of Fe3O4 nanoparticles with a diameter of about 50-100 nm and had selectivity for Cd2+ adsorption. The maximum adsorption capacity for Cd2+ is 175 mg/g at pH 5.0 and 303 K. The experimental data were well described by the Langmuir isotherm model and pseudo-second-order model. The parameters of adsorption thermodynamics concluded that the adsorption progress is spontaneous and endothermic in nature. The parameters of adsorption activation energy suggested that there is physical adsorption and chemisorption on the adsorption of metal ions. AAMA could be regenerated by EDTA and still keep 71% adsorption capacity in the fifth consecutive adsorption-regeneration cycle. Therefore, AAMA would be useful as a selective and high adsorption capacity nano-magnetic adsorbent in the removal of Cd2+ from wastewater.


Subject(s)
Polymers , Water Pollutants, Chemical , Acrylamide , Adsorption , Alginic Acid , Cadmium , Kinetics , Magnetic Phenomena
17.
ACS Omega ; 6(1): 327-339, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33458484

ABSTRACT

High phosphorus concentrations mainly result in environmental problems such as agricultural pollution and eutrophication, which have great negative influence on many natural water bodies. In this work, calcium lignosulfonate was employed to produce calcium-doped char at 400 and 800 °C. To compare the phosphorus adsorption behaviors of the two carbon materials, batch adsorption experiments were conducted in a phosphorus microenvironment. The factors including the initial solution pH, phosphorus concentration, and adsorbent amount were considered, and the main characteristics of calcium-doped chars before and after adsorption were assessed. The results revealed that the phosphorus removal processes fitted both the Freundlich and pseudo-second-order-kinetic models. According to the Langmuir model, the maximum adsorption capacities of the two adsorbents obtained at 400 and 800 °C toward phosphorus (50 °C) were 53.22 and 17.77 mg/g adsorbent, respectively. The former was rich in calcium carbonate (CaCO3) and hydroxyl and carboxyl groups, and it mainly served as a precipitant and a chelating agent, while the latter with a high surface area was dominant in P adsorption.

18.
RSC Adv ; 11(33): 20541-20549, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-35479902

ABSTRACT

There are various lignocellulosic biomass pretreatments that act as attractive strategies to improve anaerobic digestion for methane (CH4) generation. This study proposes an effective technique to obtain more CH4 via the hydrothermal coupled calcium peroxide (CaO2) co-cellulase pretreatment of lignocellulosic biomass. The total organic carbon in the hydrolysate of samples treated with 6% CaO2 and 15 mg enzyme per g-cellulose was 7330 mg L-1, which represented an increase of 92.39% over the total organic carbon value of samples hydrolyzed with the enzyme alone. The promotion of the anaerobic digestion of wheat straw followed this order: hydrothermal coupled CaO2 co-cellulase pretreatment > hydrothermal coupled CaO2 pretreatment > enzymatic pretreatment alone > control group. The sample treated with 6% CaO2 and 15 mg enzyme per g-cellulose gave the highest CH4 production with a CH4 yield of 214 mL g-1 total solids, which represented an increase of 64.81% compared to the control group. The CH4 yield decreased slightly when the amount of added cellulase exceeded 15 mg enzyme per g-cellulose.

19.
RSC Adv ; 11(10): 5506-5511, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-35423071

ABSTRACT

Polychlorinated biphenyls (PCBs) are synthetic organic compounds that are extremely difficult to break down in water and can accumulate in human fat and organisms. However, methods that can be used to detect large amounts of PCBs remain unsatisfactory, as they are generally overly sensitive and involve complex operations. An aptamer-based catalytic hairpin assembly (aptamer-CHA) reaction for the selective detection of 3,3',4,4'-tetrachlorobiphenyl (PCB 77) was developed. It combines the advantages of aptamers and signal amplification reactions. The aptamer selectivity recognizes the target, PCB 77, which triggers the sensitive CHA reaction to produce a fluorescence signal. CHA is a sensitive enzyme-free signal amplification method suitable for on-site detection. Therefore, the identification aptamer is the basis for the quantitative detection of PCB 77, with a detection range of 0.01 µg L-1 to 500 µg L-1 and a detection limit of 0.01 µg L-1. In this study, the aptamer was used to improve the selectivity of the reaction, and the CHA reaction improved the sensitivity of the detection system. Such high-sensitivity PCB detection capabilities with simplified procedures may be useful for real-time field detection and other monitoring tasks. This method can be used as a rapid fluorescence detection strategy for other targets in aquatic environments.

20.
RSC Adv ; 11(18): 10625-10634, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-35423568

ABSTRACT

In this study, granular activated carbon (GAC) and Fe-modified granular activated carbon (FeGAC) prepared by ultrasonic impregnation method were added into respective up-flow anaerobic sludge blanket (UASB) reactors to explore their effects on the anammox process start-up. The results showed that the time of anammox system start-up could be reduced from 108 d in R1 (control group) to 94 d in R2 (GAC reactor) and to 83 d in R3 (FeGAC reactor). After 120 days of operation, the nitrogen removal rates (NRR) of all reactors could reach more than 0.8 kg-N m-3 d-1. Extracellular polymeric substance (EPS) amount, heme c content and the anammox bacterial functional gene copy numbers gradually increased in all reactors with the passage of culture time, and manifested the superiority in R3 especially. High throughput sequencing revealed that Candidatus Kuenenia was the dominant species in all reactors in the end. It was also demonstrated that FeGAC markedly strengthened the growth and aggregation of anammox bacteria, which is promising for the practical application of the anammox process.

SELECTION OF CITATIONS
SEARCH DETAIL