Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(20): 25676-25685, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38742765

ABSTRACT

Single-molecule detection with high accuracy and specialty plays an important role in biomedical diagnosis and screening. Zero-mode waveguides (ZMWs) enable the possibility of single biological molecule detection in real time. Nevertheless, the absence of a reliable assessment for single effective complex loading has constrained further applications of ZMWs in complex interaction. Both the quantity and activity of the complex loaded into ZMWs have a critical effect on the efficiency of detection. Herein, a fluorescence evaluation at quenching and accumulation checkpoints was established to assess and optimize single effective complex loading into ZMWs. A primer-template-enzyme ternary complex was designed, and then an evaluation for quantity statistics at the quenching checkpoint and functional activity at the accumulation checkpoint was used to validate the effectiveness of complexes loaded into ZMWs. By optimizing the parameters such as loading time, procedures, and enzyme amount, the single-molecule effective occupancy was increased to 25.48%, achieving 68.86% of the theoretical maximum value (37%) according to Poisson statistics. It is of great significance to provide effective complex-loading validation for improving the sample-loading efficiency of single-molecule assays or sequencing in the future.


Subject(s)
Spectrometry, Fluorescence , Fluorescence
2.
Anal Bioanal Chem ; 416(10): 2453-2464, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38400940

ABSTRACT

The digital polymerase chain reaction (dPCR) is a new and developing nucleic acid detection technology with high sensitivity that can realize the absolute quantitative analysis of samples. In order to improve the accuracy of quantitative results, real-time digital PCR emphasizes the kinetic information during amplification to identify prominent abnormal data. However, it is challenging to use a unified standard to accurately classify the amplification curve of each well as negative and positive, due to the interference caused by various factors in the experiment. In this work, a normal distribution-based cycle threshold value self-correcting model (NCSM) was established, which focused on the feature of the cycle threshold values in amplification curves and conducted continuous detection and correction on the whole. The cycle threshold value distribution was closer to the ideal normal distribution to avoid the influence of interference. Thus, the model achieves a more accurate classification between positive and negative results. The corrective process was applied to plasmid samples and resulted in an accuracy improvement from 92 to 99%. The coefficient of variation was below 5% when considering the quantitation of a range between 100 and 10,000 copies. At the same time, by utilizing this model, the distribution of cycle threshold values at the endpoint can be predicted with fewer thermal cycles, which can reduce the cycling time by around 25% while maintaining a consistency of more than 98%. Therefore, using the NCSM can effectively enhance the quantitative accuracy and increase the detection efficiency based on the real-time dPCR platform.


Subject(s)
Normal Distribution , Real-Time Polymerase Chain Reaction/methods , Plasmids
3.
ACS Appl Mater Interfaces ; 15(42): 49511-49526, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37812455

ABSTRACT

Exosomes (EXOs) play a crucial role in biological action mechanisms. Understanding the biological process of single-molecule interactions on the surface of the EXO membrane is essential for elucidating the precise function of the EXO receptor. However, due to dimensional incompatibility, monitoring the binding events between EXOs of tens to hundreds of nanometers and biomolecules of nanometers using existing nanostructure antennas is difficult. Unlike the typical zero-mode waveguides (ZMWs), this work presents a nanocavity antenna (λvNAs) formed by nanocavities with diameters close to the visible light wavelength dimensions. Effective excitation volumes suitable for observing single-molecule fluorescence were generated in nanocavities of larger diameters than typical ZMWs; the optimal signal-to-noise ratio obtained was 19.5 when the diameter was 300 nm and the incident angle was ∼50°. EXOs with a size of 50-150 nm were loaded into λvNAs with an optimized diameter of 300-500 nm, resulting in appreciable occupancy rates that overcame the nanocavity size limitation for large-volume biomaterial loading. Additionally, this method identified the binding events between the single transmembrane CD9 proteins on the EXO surface and their monoclonal antibody anti-CD9, demonstrating that λvNAs expanded the application range beyond subwavelength ZMWs. Furthermore, the λvNAs provide a platform for obtaining in-depth knowledge of the interactions of single molecules with biomaterials ranging in size from tens to hundreds of nanometers.


Subject(s)
Exosomes , Nanostructures , Nanostructures/chemistry , Nanotechnology/methods , Microscopy, Fluorescence , Membrane Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...