Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Environ Res ; 202: 106716, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39226783

ABSTRACT

Marine heatwaves (MHWs) are increasing in frequency and intensity, threatening marine organisms and ecosystems they support. Yet, little is known about impacts of intensifying MHWs on ecologically and economically important bivalves cultured in the South China Sea. Here, we compared survival and physiological responses of five bivalve species, Pinctada fucata, Crassostrea angulata, Perna viridis, Argopecten irradians and Paphia undulata, to two consecutive MHWs events (3 days of thermal exposure to + 4 °C or + 8 °C, following 3 days of recovery under ambient conditions). While P. fucata, P. viridis, and P. undulata are native to the South China Sea region, C. angulata and A. irradians are not. Individuals of P. fucata, C. angulata and P. viridis had higher stress tolerance to MHWs than A. irradians and P. undulata, the latter already experiencing 100% mortality under +8 °C conditions during the first event. With increasing intensity of MHWs, standard metabolic rates of all five species increased significantly, in line with significant depressions of function-related energy-metabolizing enzymes (CMA, NKA, and T-ATP). Likewise, activities of antioxidant enzymes (SOD, CAT, and MDA) and shell mineralization-related enzymes (AKP and ACP) responded significantly to MHWs, despite species-specific performances observed. These findings demonstrate that some bivalve species can likely fail to accommodate intensifying MHWs events in the South China Sea, but some may persist. If this is the case, then one would expect substantial loss of fitness in bivalve aquaculture in the South China Sea under intensifying MHWs conditions.

2.
Adv Sci (Weinh) ; 11(11): e2303222, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38214384

ABSTRACT

The modern theory of quantized polarization has recently extended from 1D dipole moment to multipole moment, leading to the development from conventional topological insulators (TIs) to higher-order TIs, i.e., from the bulk polarization as primary topological index, to the fractional corner charge as secondary topological index. The authors here extend this development by theoretically discovering a higher-order end TI (HOETI) in a real projective lattice and experimentally verifying the prediction using topolectric circuits. A HOETI realizes a dipole-symmetry-protected phase in a higher-dimensional space (conventionally in one dimension), which manifests as 0D topologically protected end states and a fractional end charge. The discovered bulk-end correspondence reveals that the fractional end charge, which is proportional to the bulk topological invariant, can serve as a generic bulk probe of higher-order topology. The authors identify the HOETI experimentally by the presence of localized end states and a fractional end charge. The results demonstrate the existence of fractional charges in non-Euclidean manifolds and open new avenues for understanding the interplay between topological obstructions in real and momentum space.

3.
Adv Sci (Weinh) ; 9(36): e2202922, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36372546

ABSTRACT

Topological phases of matter are conventionally characterized by the bulk-boundary correspondence in Hermitian systems. The topological invariant of the bulk in d dimensions corresponds to the number of (d - 1)-dimensional boundary states. By extension, higher-order topological insulators reveal a bulk-edge-corner correspondence, such that nth order topological phases feature (d - n)-dimensional boundary states. The advent of non-Hermitian topological systems sheds new light on the emergence of the non-Hermitian skin effect (NHSE) with an extensive number of boundary modes under open boundary conditions. Still, the higher-order NHSE remains largely unexplored, particularly in the experiment. An unsupervised approach-physics-graph-informed machine learning (PGIML)-to enhance the data mining ability of machine learning with limited domain knowledge is introduced. Through PGIML, the second-order NHSE in a 2D non-Hermitian topoelectrical circuit is experimentally demonstrated. The admittance spectra of the circuit exhibit an extensive number of corner skin modes and extreme sensitivity of the spectral flow to the boundary conditions. The violation of the conventional bulk-boundary correspondence in the second-order NHSE implies that modification of the topological band theory is inevitable in higher dimensional non-Hermitian systems.

4.
Optim Lett ; 16(1): 333-353, 2022.
Article in English | MEDLINE | ID: mdl-33425039

ABSTRACT

During major infectious disease outbreak, such as COVID-19, the goods and parcels supply and distribution for the isolated personnel has become a key issue worthy of attention. In this study, we propose a delivery problem that arises in the last-mile delivery during major infectious disease outbreak. The problem is to construct a Hamiltonian tour over a subset of candidate parking nodes, and each customer is assigned to the nearest parking node on the tour to pick up goods or parcels. The aim is to minimize the total cost, including the routing, allocation, and parking costs. We propose three models to formulate the problem, which are node-based, flow-based and bilevel programing formulations. Moreover, we develop a variable neighborhood search algorithm based on the ideas from the bilevel programing formulations to solve the problem. Finally, the proposed algorithm is tested on a set of randomly generated instances, and the results indicate the effectiveness of the proposed approach.

5.
Phys Rev Lett ; 124(2): 026402, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-32004057

ABSTRACT

We resolve a fundamental issue associated with the conventional Kohn-Sham formulation of real-time time-dependent density functional theory. We show that unphysical multielectron excitations, generated during time propagation of the Kohn-Sham equations due to fixation of the total number of Kohn-Sham orbitals and their occupations, result in incorrect electron density and, therefore, wrong predictions of physical properties. A new formulation is proposed in that the number of Kohn-Sham orbitals and their occupations are updated on the fly, the unphysical multielectron excitations are removed, and the correct electron density is determined. The correctness of the new formulation is demonstrated by simulations of Rabi oscillation, as analytical results are available for comparison in the case of noninteracting electrons.

6.
J Phys Condens Matter ; 30(33): 335301, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30033939

ABSTRACT

We show that the tight-binding Hamiltonian of any carbon nanotube with C N symmetry can be represented by N decoupled tight-binding Hamiltonians of molecular chains, for which a general pseudospin formulation, characterized by specific paths in a two-dimensional auxiliary space, is developed. The quantum phases therefore are given by a set of N winding numbers of the paths. The paths degenerate to lines and circles for armchair and zigzag carbon nanotubes, respectively. They rotate in the auxiliary space when a magnetic field of varying strength is applied along the carbon nanotube, which gives rise to quantum phase transitions.

SELECTION OF CITATIONS
SEARCH DETAIL