Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci China Life Sci ; 67(8): 1563-1578, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38613742

ABSTRACT

Since its identification as a marker for advanced melanoma in the 1980s, CD146 has been found to have multiple functions in both physiological and pathological processes, including embryonic development, tissue repair and regeneration, tumor progression, fibrosis disease, and inflammations. Subsequent research has revealed that CD146 is involved in various signaling pathways as a receptor or co-receptor in these processes. This correlation between CD146 and multiple diseases has sparked interest in its potential applications in diagnosis, prognosis, and targeted therapy. To better comprehend the versatile roles of CD146, we have summarized its research history and synthesized findings from numerous reports, proposing that cell plasticity serves as the underlying mechanism through which CD146 contributes to development, regeneration, and various diseases. Targeting CD146 would consequently halt cell state shifting during the onset and progression of these related diseases. Therefore, the development of therapy targeting CD146 holds significant practical value.


Subject(s)
CD146 Antigen , Cell Plasticity , Signal Transduction , Humans , CD146 Antigen/metabolism , Animals , Neoplasms/metabolism , Neoplasms/therapy , Neoplasms/pathology , Molecular Targeted Therapy/methods
2.
ACS Appl Mater Interfaces ; 15(28): 34145-34158, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37428624

ABSTRACT

Tailored magnetic multilayers (MMLs) provide skyrmions with enhanced thermal stability, leading to the possibility of skyrmion-based devices for room-temperature applications. At the same time, the search for additional stable topological spin textures has been under intense research focus. Besides their fundamental importance, such textures may expand the information encoding capability of spintronic devices. However, fractional spin texture states within MMLs in the vertical dimension are yet to be investigated. In this work, we demonstrate numerically fractional skyrmion tubes (FSTs) in a tailored MML system. We subsequently propose to encode sequences of information signals with FSTs as information bits in a tailored MML device. Micromagnetic simulations and theoretical calculations are used to verify the feasibility of hosting distinct FST states within a single device, and their thermal stability is investigated. A multilayer multiplexing device is proposed, where multiple sequences of the information signals can be encoded and transmitted based on the nucleation and propagation of packets of FSTs. Finally, pipelined information transmission and automatic demultiplexing are demonstrated by exploiting the skyrmion Hall effect and introducing voltage-controlled synchronizers and width-based track selectors. The findings indicate that FSTs can be potential candidates as information carriers for future spintronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL