Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 384(6700): eadh8697, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843327

ABSTRACT

After antigen stimulation, naïve T cells display reproducible population-level responses, which arise from individual T cells pursuing specific differentiation trajectories. However, cell-intrinsic predeterminants controlling these single-cell decisions remain enigmatic. We found that the subcellular architectures of naïve CD8 T cells, defined by the presence (TØ) or absence (TO) of nuclear envelope invaginations, changed with maturation, activation, and differentiation. Upon T cell receptor (TCR) stimulation, naïve TØ cells displayed increased expression of the early-response gene Nr4a1, dependent upon heightened calcium entry. Subsequently, in vitro differentiation revealed that TØ cells generated effector-like cells more so compared with TO cells, which proliferated less and preferentially adopted a memory-precursor phenotype. These data suggest that cellular architecture may be a predeterminant of naïve CD8 T cell fate.


Subject(s)
CD8-Positive T-Lymphocytes , Nuclear Receptor Subfamily 4, Group A, Member 1 , Receptors, Antigen, T-Cell , Animals , Mice , Calcium/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/ultrastructure , Cell Differentiation , Immunologic Memory , Lymphocyte Activation , Mice, Inbred C57BL , Nuclear Envelope/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Microscopy, Fluorescence , Fluorescent Antibody Technique , Humans
2.
Mol Cancer Ther ; 23(7): 1010-1020, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38638035

ABSTRACT

Metastatic colorectal cancer remains a leading cause of cancer-related deaths, with a 5-year survival rate of only 15%. T cell-engaging bispecific antibodies (TCBs) represent a class of biopharmaceuticals that redirect cytotoxic T cells toward tumor cells, thereby turning immunologically "cold" tumors into "hot" ones. The carcinoembryonic antigen (CEA) is an attractive tumor-associated antigen that is overexpressed in more than 98% of patients with colorectal cancer. In this study, we report the comparison of four different TCB formats employing the antibodies F4 (targeting human CEA) and 2C11 (targeting mouse CD3ε). These formats include both antibody fragment-based and IgG-based constructs, with either one or two binding specificities of the respective antibodies. The 2 + 1 arrangement, using an anti-CEA single-chain diabody fused to an anti-CD3 single-chain variable fragment, emerged as the most potent design, showing tumor killing at subnanomolar concentrations across three different CEA+ cell lines. The in vitro activity was three times greater in C57BL/6 mouse colon adenocarcinoma cells (MC38) expressing high levels of CEA compared with those expressing low levels, highlighting the impact of CEA density in this assay. The optimal TCB candidate was tested in two different immunocompetent mouse models of colorectal cancer and showed tumor growth retardation. Ex vivo analysis of tumor infiltrates showed an increase in CD4+ and CD8+ T cells upon TCB treatment. This study suggests that bivalent tumor targeting, monovalent T-cell targeting, and a short spatial separation are promising characteristics for CEA-targeting TCBs.


Subject(s)
Antibodies, Bispecific , Carcinoembryonic Antigen , Colorectal Neoplasms , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/immunology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Animals , Carcinoembryonic Antigen/immunology , Humans , Mice , Cell Line, Tumor , T-Lymphocytes/immunology , CD3 Complex/immunology , Xenograft Model Antitumor Assays , Disease Models, Animal
3.
Curr Opin Immunol ; 77: 102185, 2022 08.
Article in English | MEDLINE | ID: mdl-35576865

ABSTRACT

T cell responses are critical for controlling cytomegalovirus (CMV) infection. However, CMV expresses immune evasion genes promoting escape from T cell immunity. Furthermore, CMV persistence in form of latency, coupled with viral reactivation events, provokes two unique features of CMV-specific CD8 T cell responses: their size and phenotype. CMV-specific T cells with certain specificities respond to the infection by an initial expansion and thereafter a secondary increase to reach high and stably maintained frequencies of functional and widely dispersed CMV-specific CD8 T cells - in a process termed 'memory inflation'. Additionally, many of these 'inflated' CD8 T cells exhibit a particular phenotype, characterized by the expression of effector-memory and natural killer-associated markers. Here, we review and discuss insights into T cell responses elicited by CMV infection combined with cellular and molecular mechanisms explaining the scale and the phenotype of inflationary cells and their function in CMV infection.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , CD8-Positive T-Lymphocytes , Humans , Immunologic Memory
4.
Pathogens ; 10(12)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34959486

ABSTRACT

CD4 T cells are well known for their supportive role in CD8 T cell and B cell responses during viral infection. However, during murine cytomegalovirus (MCMV) infection in the salivary glands (SGs), CD4 T cells exhibit direct antiviral effector functions to control the infection. In this mucosal organ, opposed to other infected tissues, MCMV establishes a sustained lytic replication that lasts for several weeks. While the protective function of CD4 T cells is exerted through the production of the pro-inflammatory cytokines interferon gamma (IFNγ) and tumor necrosis factor alpha (TNF), the reasons for their markedly delayed control of lytic MCMV infection remain elusive. Here, we review the current knowledge on the dynamics and mechanisms of the CD4 T cell-mediated control of MCMV-infected SGs, including their localization in the SG in relation to MCMV infected cells and other immune cells, their mode of action, and their regulation.

5.
J Exp Med ; 218(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34529751

ABSTRACT

Intestinal epithelial cell (IEC) NF-κB signaling regulates the balance between mucosal homeostasis and inflammation. It is not fully understood which signals tune this balance and how bacterial exposure elicits the process. Pure LPS induces epithelial NF-κB activation in vivo. However, we found that in mice, IECs do not respond directly to LPS. Instead, tissue-resident lamina propria intercrypt macrophages sense LPS via TLR4 and rapidly secrete TNF to elicit epithelial NF-κB signaling in their immediate neighborhood. This response pattern is relevant also during oral enteropathogen infection. The macrophage-TNF-IEC axis avoids responses to luminal microbiota LPS but enables crypt- or tissue-scale epithelial NF-κB responses in proportion to the microbial threat. Thereby, intercrypt macrophages fulfill important sentinel functions as first responders to Gram-negative microbes breaching the epithelial barrier. The tunability of this crypt response allows the induction of defense mechanisms at an appropriate scale according to the localization and intensity of microbial triggers.


Subject(s)
Anti-Bacterial Agents/metabolism , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Intestines/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factors/metabolism , Animals , Gene Expression Regulation/physiology , Inflammation/metabolism , Macrophages/drug effects , Mice , Mice, Inbred C57BL , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL