Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 143(21): 2166-2177, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38437728

ABSTRACT

ABSTRACT: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Current treatments, based on intensive chemotherapy regimens provide overall survival rates of ∼85% in children and <50% in adults, calling the search of new therapeutic options. We previously reported that targeting the T-cell receptor (TCR) in T-ALL with anti-CD3 (αCD3) monoclonal antibodies (mAbs) enforces a molecular program akin to thymic negative selection, a major developmental checkpoint in normal T-cell development; induces leukemic cell death; and impairs leukemia progression to ultimately improve host survival. However, αCD3 monotherapy resulted in relapse. To find out actionable targets able to re-enforce leukemic cells' vulnerability to αCD3 mAbs, including the clinically relevant teplizumab, we identified the molecular program induced by αCD3 mAbs in patient-derived xenografts derived from T-ALL cases. Using large-scale transcriptomic analysis, we found prominent expression of tumor necrosis factor α (TNFα), lymphotoxin α (LTα), and multiple components of the "TNFα via NF-κB signaling" pathway in anti-CD3-treated T-ALL. We show in vivo that etanercept, a sink for TNFα/LTα, enhances αCD3 antileukemic properties, indicating that TNF/TNF receptor (TNFR) survival pathways interferes with TCR-induced leukemic cell death. However, suppression of TNF-mediated survival and switch to TNFR-mediated cell death through inhibition of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) with the second mitochondrial-derived activator of caspases (SMAC) mimetic birinapant synergizes with αCD3 to impair leukemia expansion in a receptor-interacting serine/threonine-protein kinase 1-dependent manner and improve mice survival. Thus, our results advocate the use of either TNFα/LTα inhibitors, or birinapant/other SMAC mimetics to improve anti-CD3 immunotherapy in T-ALL.


Subject(s)
CD3 Complex , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Tumor Necrosis Factor-alpha , Humans , Animals , Mice , CD3 Complex/immunology , CD3 Complex/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Immunotherapy/methods , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use
2.
Blood ; 136(11): 1298-1302, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32483610

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy that accounts for ∼20% of ALL cases. Intensive chemotherapy regimens result in cure rates >85% in children and <50% in adults, warranting a search of novel therapeutic strategies. Although immune-based therapies have tremendously improved the treatment of B-ALL and other B-cell malignancies, they are not yet available for T-ALL. We report here that humanized, non-Fcγ receptor (FcγR)-binding monoclonal antibodies (mAbs) to CD3 have antileukemic properties in xenograft (PDX) models of CD3+ T-ALL, resulting in prolonged host survival. We also report that these antibodies cooperate with chemotherapy to enhance antileukemic effects and host survival. Because these antibodies show only minor, manageable adverse effects in humans, they offer a new therapeutic option for the treatment of T-ALL. Our results also show that the antileukemic properties of anti-CD3 mAbs are largely independent of FcγR-mediated pathways in T-ALL PDXs.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , CD3 Complex/immunology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized/immunology , Antineoplastic Agents, Immunological/immunology , CD3 Complex/antagonists & inhibitors , Combined Modality Therapy , Dexamethasone/administration & dosage , Dose-Response Relationship, Immunologic , Female , Humans , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Specific Pathogen-Free Organisms , Vincristine/administration & dosage , Xenograft Model Antitumor Assays
3.
Oncoscience ; 4(3-4): 17-18, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28540327
4.
Cancer Discov ; 6(9): 972-85, 2016 09.
Article in English | MEDLINE | ID: mdl-27354269

ABSTRACT

UNLABELLED: Cancer onset and progression involves the accumulation of multiple oncogenic hits, which are thought to dominate or bypass the physiologic regulatory mechanisms in tissue development and homeostasis. We demonstrate in T-cell acute lymphoblastic leukemia (T-ALL) that, irrespective of the complex oncogenic abnormalities underlying tumor progression, experimentally induced, persistent T-cell receptor (TCR) signaling has antileukemic properties and enforces a molecular program resembling thymic negative selection, a major developmental event in normal T-cell development. Using mouse models of T-ALL, we show that induction of TCR signaling by high-affinity self-peptide/MHC or treatment with monoclonal antibodies to the CD3ε chain (anti-CD3) causes massive leukemic cell death. Importantly, anti-CD3 treatment hampered leukemogenesis in mice transplanted with either mouse- or patient-derived T-ALLs. These data provide a strong rationale for targeted therapy based on anti-CD3 treatment of patients with TCR-expressing T-ALL and demonstrate that endogenous developmental checkpoint pathways are amenable to therapeutic intervention in cancer cells. SIGNIFICANCE: T-ALLs are aggressive malignant lymphoid proliferations of T-cell precursors characterized by high relapse rates and poor prognosis, calling for the search for novel therapeutic options. Here, we report that the lineage-specific TCR/CD3 developmental checkpoint controlling cell death in normal T-cell progenitors remains switchable to induce massive tumor cell apoptosis in T-ALL and is amenable to preclinical therapeutic intervention. Cancer Discov; 6(9); 972-85. ©2016 AACR.See related commentary by Lemonnier and Mak, p. 946This article is highlighted in the In This Issue feature, p. 932.


Subject(s)
Leukemia, T-Cell/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes/metabolism , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Apoptosis/drug effects , Apoptosis/immunology , CD3 Complex/immunology , CD3 Complex/metabolism , Clonal Selection, Antigen-Mediated , Disease Models, Animal , Female , Humans , Immunophenotyping , Leukemia, T-Cell/drug therapy , Leukemia, T-Cell/genetics , Leukemia, T-Cell/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice , Mice, Knockout , Signal Transduction/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL