Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Infect Dis ; 24(1): 768, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090537

ABSTRACT

BACKGROUND: Data on the dynamics and persistence of humoral immunity against SARS-CoV-2 after primary vaccination with two-dose inactivated vaccine (CoronaVac) are limited. This study evaluated the sequential effects of prior infection, heterologous boosting with mRNA-1273 (Moderna), and the occurrence of Omicron vaccine-breakthrough infection (VBI) thereafter. METHODS: We evaluated anti-spike IgG (Abbott) and neutralising (cPASS/GenScript) antibody (nAb) titers up to one year after mRNA-1273 boost in two-dose-CoronaVac-primed Indonesian healthcare workers (August 2021-August 2022). We used linear mixed modeling to estimate the rate of change in antibody levels, and logistic regression to examine associations between antibody levels and VBI. RESULTS: Of 138 participants, 52 (37.7%) had a prior infection and 78 (56.5%) received an mRNA-1273 booster. After two-dose CoronaVac, antibody titers had significantly declined within 180 days, irrespective of prior infection. After mRNA-1273 booster, anti-spike IgG (1.47% decline/day) and Omicron B.1.1.529/BA.2 nAbs declined between day 28-90, and IgG titers plateaued between day 90-360. During the BA.1/BA.2 wave (February-March 2022), 34.6% (27/78) of individuals experienced a VBI (median 181 days after mRNA-1273), although none developed severe illness. VBI was associated with low pre-VBI anti-spike IgG and B.1.1.529/BA.2 nAbs, which were restored post-VBI. CONCLUSIONS: mRNA-1273 booster after two-dose CoronaVac did not prevent BA.1/BA.2 VBI. Periodic vaccine boosters may be warranted against emerging SARS-CoV-2 variants.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , Breakthrough Infections , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , Adult , Female , Humans , Male , Middle Aged , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Breakthrough Infections/epidemiology , Breakthrough Infections/immunology , Breakthrough Infections/prevention & control , COVID-19/prevention & control , COVID-19/immunology , COVID-19/epidemiology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Health Personnel , Immunoglobulin G/blood , Indonesia/epidemiology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage
2.
Lancet Reg Health Southeast Asia ; 22: 100348, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38482150

ABSTRACT

Background: Limited data exist from southeast Asia on the impact of SARS-CoV-2 variants and inactivated vaccines on disease severity and death among patients hospitalised with COVID-19. Methods: A multicentre hospital-based prospective cohort was enrolled from September 2020 through January 2023, spanning pre-delta, delta, and omicron periods. The participant hospitals were conveniently sampled based on existing collaborations, site willingness and available study resources, and included six urban and two rural general hospitals from East Nusa Tenggara, Jakarta, and North Sumatra provinces. Factors associated with severe disease and day-28 mortality were examined using logistic and Cox regression. Findings: Among 822 participants, the age-adjusted percentage of severe disease was 26.8% (95% CI 22.7-30.9) for pre-delta, 50.1% (44.0-56.2) for delta, and 15.2% (9.7-20.7) for omicron. The odds of severe disease were 64% (18-84%) lower for omicron than delta (p < 0.001). One or more vaccine doses reduced the odds of severe disease by 89% (65-97%) for delta and 98% (91-100%) for omicron. Age-adjusted mortality was 11.9% (8.8-15.0) for pre-delta, 24.4% (18.8-29.9) for delta and 9.6% (5.2-14.0) for omicron. The day-28 cumulative incidence of death was lower for omicron (9.2% [5.6-13.9%]) than delta (28.6% [22.0-35.5%]) (p < 0.001). Severe disease on admission was the predominant prognostic factor for death (aHR34.0 [16.6-69.9] vs mild-or-moderate; p < 0.001). After controlling for disease severity on admission as an intermediate, the risk of death was 48% (32-60%) lower for omicron than delta (p < 0.001); and 51% (38-61%; p < 0.001) lower for vaccinated participants than unvaccinated participants overall, and 56% (37-69%; p < 0.001) for omicron, 46% (-5 to 73%; p = 0.070) for pre-delta (not estimable for delta). Interpretation: Infections by omicron variant resulted in less severe and fatal outcomes than delta in hospitalised patients in Indonesia. However, older, and unvaccinated individuals remained at greater risk of adverse outcomes. Funding: University of Oxford and Wellcome Trust.

3.
Am J Trop Med Hyg ; 107(2): 284-290, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35895405

ABSTRACT

Standard diagnosis of SARS-CoV-2 by nasopharyngeal swab (NPS) and real-time reverse transcriptase-polymerase chain reaction (PCR) requires a sophisticated laboratory, skilled staff, and expensive reagents that are difficult to establish and maintain in isolated, low-resource settings. In the remote setting of tropical Sumba Island, eastern Indonesia, we evaluated alternative sampling with fresh saliva (FS) and testing with colorimetric loop-medicated isothermal amplification (LAMP). Between August 2020 and May 2021, we enrolled 159 patients with suspected SARS-CoV-2 infection, of whom 75 (47%) had a positive PCR on NPS (median cycle threshold [Ct] value: 27.6, interquartile range: 12.5-37.6). PCR on FS had a sensitivity of 72.5% (50/69, 95% confidence interval [CI]: 60.4-82.5) and a specificity of 85.7% (66/77, 95% CI: 75.9-92.6), and positive (PPV) and negative (NPV) predictive values of 82.0% (95% CI: 0.0-90.6) and 77.6% (95% CI: 67.3-86.0), respectively. LAMP on NPS had a sensitivity of 68.0% (51/75, 95% CI: 56.2-78.3) and a specificity of 70.8% (63/84, 95% CI: 58.9-81.0), with PPV 70.8% (95% CI: 58.9-81.0) and NPV 72.4% (95% CI: 61.8-81.5%). LAMP on FS had a sensitivity of 62.3% (43/69, 95% CI: 49.8-73.7%) and a specificity of 72.7% (56/77, 95% CI: 61.4-82.3%), with PPV 67.2% (95% CI: 54.3-78.4) and NPV 68.3% (95% CI: 57.1-78.1%). LAMP sensitivity was higher for NPS and FS specimens with high viral loads (87.1% and 75.0% for Ct value < 26, respectively). Dried saliva on filter paper was stable for 4 days at room temperature. LAMP on either NPS or FS could offer an accessible alternative for SARS-CoV-2 diagnosis in low-resource settings, with potential for optimizing sample collection and processing, and selection of gene targets.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Reverse Transcription , Clinical Laboratory Techniques , Saliva , Sensitivity and Specificity , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Real-Time Polymerase Chain Reaction , RNA, Viral/genetics
SELECTION OF CITATIONS
SEARCH DETAIL