Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612917

ABSTRACT

Evolocumab and empagliflozin yield a modest rise in plasma high-density lipoprotein cholesterol (HDL-C) through unknown mechanisms. This study aims to assess the effect of evolocumab plus empagliflozin vs. empagliflozin alone on HDL subspecies isolated from individuals with type 2 diabetes mellitus (T2D). This post hoc prespecified analysis of the EXCEED-BHS3 trial compared the effects of a 16-week therapy with empagliflozin (E) alone or in combination with evolocumab (EE) on the lipid profile and cholesterol content in HDL subspecies in individuals with T2D divided equally into two groups of 55 patients. Both treatments modestly increased HDL-C. The cholesterol content in HDL subspecies 2a (7.3%), 3a (7.2%) and 3c (15%) increased from baseline in the E group, while the EE group presented an increase from baseline in 3a (9.3%), 3b (16%) and 3c (25%). The increase in HDL 3b and 3c was higher in the EE group when compared to the E group (p < 0.05). No significant interactive association was observed between changes in hematocrit and HDL-C levels after treatment. Over a 16-week period, empagliflozin with or without the addition of evolocumab led to a modest but significant increase in HDL-C. The rise in smaller-sized HDL particles was heterogeneous amongst the treatment combinations.


Subject(s)
Benzhydryl Compounds , Diabetes Mellitus, Type 2 , Glucosides , Humans , Diabetes Mellitus, Type 2/drug therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Cholesterol, HDL
2.
Int J Mol Sci ; 25(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38279290

ABSTRACT

Despite significant therapeutic advancements, morbidity and mortality following myocardial infarction (MI) remain unacceptably high. This clinical challenge is primarily attributed to two significant factors: delayed reperfusion and the myocardial injury resulting from coronary reperfusion. Following reperfusion, there is a rapid intracellular pH shift, disruption of ionic balance, heightened oxidative stress, increased activity of proteolytic enzymes, initiation of inflammatory responses, and activation of several cell death pathways, encompassing apoptosis, necroptosis, and pyroptosis. The inflammatory cell death or pyroptosis encompasses the activation of the intracellular multiprotein complex known as the NLRP3 inflammasome. High-density lipoproteins (HDL) are endogenous particles whose components can either promote or mitigate the activation of the NLRP3 inflammasome. In this comprehensive review, we explore the role of inflammasome activation in the context of MI and provide a detailed analysis of how HDL can modulate this process.


Subject(s)
Myocardial Infarction , Myocardial Reperfusion Injury , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Myocardial Reperfusion Injury/metabolism , Apoptosis , Pyroptosis
3.
J Clin Med ; 10(11)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063950

ABSTRACT

High density lipoproteins (HDLs) are commonly known for their anti-atherogenic properties that include functions such as the promotion of cholesterol efflux and reverse cholesterol transport, as well as antioxidant and anti-inflammatory activities. However, because of some chronic inflammatory diseases, such as type 2 diabetes mellitus (T2DM), significant changes occur in HDLs in terms of both structure and composition. These alterations lead to the loss of HDLs' physiological functions, to transformation into dysfunctional lipoproteins, and to increased risk of cardiovascular disease (CVD). In this review, we describe the main HDL structural/functional alterations observed in T2DM and the molecular mechanisms involved in these T2DM-derived modifications. Finally, the main available therapeutic interventions targeting HDL in diabetes are discussed.

4.
Ther Adv Chronic Dis ; 11: 2040622320959248, 2020.
Article in English | MEDLINE | ID: mdl-33062236

ABSTRACT

BACKGROUND: Patients with type 2 diabetes mellitus (T2DM) remain at increased cardiovascular residual risk and endothelial dysfunction, even after optimizing metabolic control and treatment by sodium-glucose-2 transporter inhibitors (SGLT2-is). The present study was based on the hypothesis that proprotein convertase subtilisin/kexin 9 inhibitor (PCSK9i) therapy may mitigate endothelial dysfunction in T2DM patients who are on regular treatment by SGLT2-i. METHODS: The EXCEED-BHS3 is a prospective, single-center, investigator-blinded, open-label, randomized clinical trial. Participants (n = 110) will be randomized (1:1) to either empagliflozin 25 mg/day alone or empagliflozin 25 mg/day plus evolocumab 140 mg every 2 weeks in addition to optimal medical care. The primary endpoint was defined as the change in the 1-min flow-mediated dilation (FMD) after 16 weeks of treatment. The secondary endpoint is the FMD change after ischemia/reperfusion injury protocol (reserve FMD) after 16 weeks of treatment. Exploratory outcomes comprise the change in FMD and reserve FMD after 8 weeks of treatment and the change after 16 weeks of treatment in the following parameters: plasma levels of nitric oxide, vascular cell adhesion molecule-1 and isoprostane, high-density lipoprotein (HDL) and low-density lipoprotein subfractions profile, HDL function, blood pressure, body mass index, waist circumference and adipokines. CONCLUSION: This will be the first study to evaluate the add-on effect of PCSK9i on endothelial function of T2DM patients under regular use of empagliflozin. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03932721.

5.
Nutr. metab. cardiovasc. dis ; 30(2): 254-264, Feb., 2020. tab., graf.
Article in English | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1052921

ABSTRACT

BACKGROUND AND AIM: Obesity-related decline in high-density lipoprotein (HDL) functions such as cholesterol efflux capacity (CEC) has supported the notion that this lipoprotein dysfunction may contribute for atherogenesis among obese patients. We investigated if potentially other HDL protective actions may be affected with weight gain and these changes may occur even before the obesity range in a cross-sectional analysis. METHODS AND RESULTS: Lipid profile, body mass index (BMI), biochemical measurements, and carotid intima-media thickness (cIMT) were obtained in this cross-sectional study with 899 asymptomatic individuals. Lipoproteins were separated by ultracentrifugation and HDL physical-chemical characterization, CEC, antioxidant activity, anti-inflammatory activity, HDL-mediated platelet aggregation inhibition were measured in a randomly-selected subgroup (n = 101). Individuals with increased HDL-C had an attenuated increase in cIMT with elevation of BMI (interaction effect ß = -0.054; CI 95% -0.0815, -0.0301). CEC, HDL-C, HDL size and HDL-antioxidant activity were negatively associated with cIMT. BMI was inversely correlated with HDL-mediated inhibition of platelet aggregation (Spearman's rho -0.157, p < 0.03) and CEC (Spearman's rho -0.32, p < 0.001), but surprisingly it was directly correlated with the antioxidant activity (Spearman's rho 0.194, p = 0.052). Thus, even in non-obese, non-diabetic individuals, increased BMI is associated with a wide change in protective functions of HDL, reducing CEC and increasing antioxidant activity. In these subjects, decreased HDL concentration, size or function are related to increased atherosclerotic burden. CONCLUSION: Our findings demonstrate that in non-obese, non-diabetic individuals, the increasing values of BMI are associated with impaired protective functions of HDL and concomitant increase in atherosclerotic burden. (AU)


Subject(s)
Atherosclerosis , Cholesterol, HDL , Obesity
6.
Nutr Metab Cardiovasc Dis ; 30(2): 254-264, 2020 02 10.
Article in English | MEDLINE | ID: mdl-31753789

ABSTRACT

BACKGROUND AND AIM: Obesity-related decline in high-density lipoprotein (HDL) functions such as cholesterol efflux capacity (CEC) has supported the notion that this lipoprotein dysfunction may contribute for atherogenesis among obese patients. We investigated if potentially other HDL protective actions may be affected with weight gain and these changes may occur even before the obesity range in a cross-sectional analysis. METHODS AND RESULTS: Lipid profile, body mass index (BMI), biochemical measurements, and carotid intima-media thickness (cIMT) were obtained in this cross-sectional study with 899 asymptomatic individuals. Lipoproteins were separated by ultracentrifugation and HDL physical-chemical characterization, CEC, antioxidant activity, anti-inflammatory activity, HDL-mediated platelet aggregation inhibition were measured in a randomly-selected subgroup (n = 101). Individuals with increased HDL-C had an attenuated increase in cIMT with elevation of BMI (interaction effect ß = -0.054; CI 95% -0.0815, -0.0301). CEC, HDL-C, HDL size and HDL-antioxidant activity were negatively associated with cIMT. BMI was inversely correlated with HDL-mediated inhibition of platelet aggregation (Spearman's rho -0.157, p < 0.03) and CEC (Spearman's rho -0.32, p < 0.001), but surprisingly it was directly correlated with the antioxidant activity (Spearman's rho 0.194, p = 0.052). Thus, even in non-obese, non-diabetic individuals, increased BMI is associated with a wide change in protective functions of HDL, reducing CEC and increasing antioxidant activity. In these subjects, decreased HDL concentration, size or function are related to increased atherosclerotic burden. CONCLUSION: Our findings demonstrate that in non-obese, non-diabetic individuals, the increasing values of BMI are associated with impaired protective functions of HDL and concomitant increase in atherosclerotic burden.


Subject(s)
Cholesterol, HDL/blood , Dyslipidemias/blood , Overweight/blood , Weight Gain , Adult , Aged , Antioxidants/analysis , Biomarkers/blood , Body Mass Index , Carotid Artery Diseases/blood , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/physiopathology , Carotid Intima-Media Thickness , Cross-Sectional Studies , Dyslipidemias/diagnosis , Dyslipidemias/physiopathology , Female , Humans , Male , Middle Aged , Overweight/diagnosis , Overweight/physiopathology , Platelet Aggregation , Risk Assessment , Risk Factors , Young Adult
7.
Cardiovasc Drugs Ther ; 33(3): 371-381, 2019 06.
Article in English | MEDLINE | ID: mdl-30778806

ABSTRACT

It is now apparent that a variety of deleterious mechanisms intrinsic to myocardial infarction (MI) exists and underlies its high residual lethality. Indeed, despite effective coronary patency therapies, ischemia and reperfusion (I/R) injury accounts for about 50% of the infarcted mass. In this context, recent studies in animal models have demonstrated that coronary reperfusion with high-density lipoproteins (HDL) may reduce MI size in up to 30%. A spectrum of mechanisms mediated by either HDL-related apolipoproteins or phospholipids attenuates myocardial cell death. Hence, promising therapeutic approaches such as infusion of reconstituted HDL particles, new HDL by genomic therapy, or the infusion of apoA-I mimetic peptides have been sought as a way of ensuring protection against I/R injury. In this review, we will explore the limitations and potential therapeutic effects of HDL therapies during the acute phase of MI.


Subject(s)
Dyslipidemias/therapy , Genetic Therapy , Hypolipidemic Agents/therapeutic use , Lipoproteins, HDL/therapeutic use , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/prevention & control , Peptides/therapeutic use , Animals , Apolipoprotein A-I/blood , Dyslipidemias/blood , Dyslipidemias/genetics , Genetic Therapy/adverse effects , Humans , Hypolipidemic Agents/adverse effects , Lipoproteins, HDL/adverse effects , Lipoproteins, HDL/genetics , Molecular Mimicry , Myocardial Infarction/blood , Myocardial Infarction/genetics , Myocardial Reperfusion Injury/blood , Myocardial Reperfusion Injury/genetics , Peptides/adverse effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL