Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
PLoS Pathog ; 20(4): e1012175, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38640117

ABSTRACT

Prions or prion-like aggregates such as those composed of PrP, α-synuclein, and tau are key features of proteinopathies such as prion, Parkinson's and Alzheimer's diseases, respectively. Their presence on solid surfaces may be biohazardous under some circumstances. PrP prions bound to solids are detectable by ultrasensitive real-time quaking-induced conversion (RT-QuIC) assays if the solids can be immersed in assay wells or the prions transferred to pads. Here we show that prion-like seeds can remain detectable on steel wires for at least a year, or even after enzymatic cleaning and sterilization. We also show that contamination of larger objects with pathological seeds of α-synuclein, tau, and PrP can be detected by simply assaying a sampling medium that has been transiently applied to the surface. Human α-synuclein seeds in dementia with Lewy bodies brain tissue were detected by α-synuclein RT-QuIC after drying of tissue dilutions with concentrations as low as 10-6 onto stainless steel. Tau RT-QuIC detected tau seeding activity on steel exposed to Alzheimer's disease brain tissue diluted as much as a billion fold. Prion RT-QuIC assays detected seeding activity on plates exposed to brain dilutions as extreme as 10-5-10-8 from prion-affected humans, sheep, cattle and cervids. Sampling medium collected from surgical instruments used in necropsies of sporadic Creutzfeldt-Jakob disease-infected transgenic mice was positive down to 10-6 dilution. Sensitivity for prion detection was not sacrificed by omitting the recombinant PrP substrate from the sampling medium during its application to a surface and subsequent storage as long as the substrate was added prior to performing the assay reaction. Our findings demonstrate practical prototypic surface RT-QuIC protocols for the highly sensitive detection of pathologic seeds of α-synuclein, tau, and PrP on solid objects.


Subject(s)
Prion Proteins , alpha-Synuclein , tau Proteins , tau Proteins/metabolism , alpha-Synuclein/metabolism , alpha-Synuclein/analysis , Humans , Prion Proteins/metabolism , Animals , Mice , Brain/metabolism , Brain/pathology , Prions/metabolism , Lewy Body Disease/metabolism
2.
J Neurol ; 271(1): 300-309, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37698615

ABSTRACT

OBJECTIVE: To investigate brain MRI abnormalities in a cohort of patients with rapidly progressive dementia (RPD) with and without a diagnosis of Creutzfeldt-Jakob disease (CJD). METHODS: One hundred and seven patients with diagnosis of prion disease (60 with definite sCJD, 33 with probable sCJD and 14 with genetic prion disease) and 40 non-prion related RPD patients (npRPD) underwent brain MRI including DWI and FLAIR. MRIs were evaluated with a semiquantitative rating score, which separately considered abnormal signal extent and intensity in 22 brain regions. Clinical findings at onset, disease duration, cerebrospinal-fluid 14-3-3 and t-tau protein levels, and EEG data were recorded. RESULTS: Among patients with definite/probable diagnosis of CJD or genetic prion disease, 2/107 had normal DWI-MRI: in one patient a 2-months follow-up DWI-MRI showed CJD-related changes while the other had autopsy-proven CJD despite no DWI abnormalities 282 days after clinical onset. CJD-related cortical changes were detected in all lobes and involvement of thalamus was common. In the npRPD groups, 6/40 patients showed DWI alterations that clustered in three different patterns: (1) minimal/doubtful signal alterations (limbic encephalitis, dementia with Lewy bodies); (2) clearly suggestive of alternative diagnoses (status epilepticus, Wernicke or metabolic encephalopathy); (3) highly suggestive of CJD (mitochondrial disease), though cortical swelling let exclude CJD. CONCLUSIONS: In the diagnostic work-up of RPD, negative/doubtful DWI makes CJD diagnosis rather unlikely, while specific DWI patterns help differentiating CJD from alternative diagnoses. The pulvinar sign is not exclusive of the variant form.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Humans , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Magnetic Resonance Imaging , Brain/diagnostic imaging , Thalamus
3.
Alzheimers Dement ; 20(2): 1156-1165, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37908186

ABSTRACT

INTRODUCTION: We assessed TAR DNA-binding protein 43 (TDP-43) seeding activity and aggregates detection in olfactory mucosa of patients with frontotemporal lobar degeneration with TDP-43-immunoreactive pathology (FTLD-TDP) by TDP-43 seeding amplification assay (TDP43-SAA) and immunocytochemical analysis. METHODS: The TDP43-SAA was optimized using frontal cortex samples from 16 post mortem cases with FTLD-TDP, FTLD with tau inclusions, and controls. Subsequently, olfactory mucosa samples were collected from 17 patients with FTLD-TDP, 15 healthy controls, and three patients carrying MAPT variants. RESULTS: TDP43-SAA discriminated with 100% accuracy post mortem cases presenting or lacking TDP-43 neuropathology. TDP-43 seeding activity was detectable in the olfactory mucosa, and 82.4% of patients with FTLD-TDP tested positive, whereas 86.7% of controls tested negative (P < 0.001). Two out of three patients with MAPT mutations tested negative. In TDP43-SAA positive samples, cytoplasmatic deposits of phosphorylated TDP-43 in the olfactory neural cells were detected. DISCUSSION: TDP-43 aggregates can be detectable in olfactory mucosa, suggesting that TDP43-SAA might be useful for identifying and monitoring FTLD-TDP in living patients.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Frontotemporal Dementia/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/pathology , tau Proteins/genetics , tau Proteins/metabolism , Frontal Lobe/metabolism , Neurons/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
4.
Immunol Res ; 71(5): 717-724, 2023 10.
Article in English | MEDLINE | ID: mdl-37171542

ABSTRACT

It is well established that neurological and non-neurological autoimmune disorders can be triggered by viral infections. It remains unclear whether SARS-CoV-2 infection induces similar conditions and whether they show a distinctive phenotype. We retrospectively identified patients with acute inflammatory CNS conditions referred to our laboratory for antibody testing during the pandemic (March 1 to August 31, 2020). We screened SARS-COV-2 IgA/IgG in all sera by ELISA and confirmed the positivity with additional assays. Clinical and paraclinical data of SARS-COV-2-IgG seropositive patients were compared to those of seronegative cases matched for clinical phenotype, geographical zone, and timeframe. SARS-CoV-2-IgG positivity was detected in 16/339 (4%) sera, with paired CSF positivity in 3/16. 5 of these patients had atypical demyelinating disorders and 11 autoimmune encephalitis syndromes. 9/16 patients had a previous history of SARS-CoV-2 infection and 6 of them were symptomatic. In comparison with 32 consecutive seronegative controls, SARS-CoV-2-IgG-positive patients were older, frequently presented with encephalopathy, had lower rates of CSF pleocytosis and other neurological autoantibodies, and were less likely to receive immunotherapy. When SARS-CoV-2 seropositive versus seronegative cases with demyelinating disorders were compared no differences were seen. Whereas seropositive encephalitis patients less commonly showed increased CSF cells and protein, our data suggest that an antecedent symptomatic or asymptomatic SARS-CoV-2 infection can be detected in patients with autoimmune neurological conditions. These cases are rare, usually do not have specific neuroglial antibodies.


Subject(s)
Autoimmune Diseases , COVID-19 , Demyelinating Diseases , Humans , Retrospective Studies , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin G
5.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166756, 2023 08.
Article in English | MEDLINE | ID: mdl-37209872

ABSTRACT

• Neuronal Ceroido Lipofuscinoses (NCL) are inherited, neurodegenerative disorders associated with lysosomal storage. • Impaired autophagy plays a pathogenetic role in several NCL forms, including CLN3 disease, but study on human brains are lacking. • In post-mortem brain samples of a CLN3 patient the LC3-I to LC3-II shift was consistent with activated autophagy. However, the autophagic process seemed to be ineffective due to the presence of lysosomal storage markers. • After fractionation with buffers of increasing detergent-denaturing strength, a peculiar solubility pattern of LC3-II was observed in CLN3 patient's samples, suggesting a different lipid composition of the membranes where LC3-II is stacked.


Subject(s)
Lysosomal Storage Diseases , Neuronal Ceroid-Lipofuscinoses , Humans , Detergents/pharmacology , Membrane Glycoproteins/metabolism , Neuronal Ceroid-Lipofuscinoses/metabolism , Molecular Chaperones/metabolism , Lysosomal Storage Diseases/pathology , Brain/metabolism
6.
Alzheimers Dement ; 19(8): 3754-3759, 2023 08.
Article in English | MEDLINE | ID: mdl-37102457

ABSTRACT

INTRODUCTION: Accumulating evidence suggests that α-synuclein (αSyn) can modulate Alzheimer's disease (AD) pathology. The aim of this study was to evaluate the prevalence and clinical features associated with cerebrospinal fluid (CSF) αSyn detected by seed amplification assay (SAA) in AD. METHODS: Eighty AD patients with CSF AT(N) biomarker positivity (mean age 70.3 ± 7.3 years) and 28 non-AD age-matched controls were included. All subjects underwent standardized clinical assessment; CSF αSyn aggregates were detected by SAA. RESULTS: CSF was αSyn-SAA positive (αSyn+) in 36/80 AD patients (45%) and in 2/28 controls (7.1%). AD αSyn+ and αSyn- patients were comparable for age, disease severity, comorbidity profile, and CSF core biomarkers. AD αSyn+ presented a higher prevalence of atypical phenotypes and symptoms. CONCLUSIONS: Our findings demonstrate that concomitant CSF αSyn pathology is present in a significant proportion of AD patients starting in the early stages and can affect clinical presentation. Longitudinal studies are warranted to evaluate the significance for the disease course.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , alpha-Synuclein/cerebrospinal fluid , Longitudinal Studies , Biomarkers/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid
8.
Acta Neuropathol Commun ; 11(1): 28, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36788566

ABSTRACT

Human cerebral organoids (COs) are three-dimensional self-organizing cultures of cerebral brain tissue differentiated from induced pluripotent stem cells. We have recently shown that COs are susceptible to infection with different subtypes of Creutzfeldt-Jakob disease (CJD) prions, which in humans cause different manifestations of the disease. The ability to study live human brain tissue infected with different CJD subtypes opens a wide array of possibilities from differentiating mechanisms of cell death and identifying neuronal selective vulnerabilities to testing therapeutics. However, the question remained as to whether the prions generated in the CO model truly represent those in the infecting inoculum. Mouse models expressing human prion protein are commonly used to characterize human prion disease as they reproduce many of the molecular and clinical phenotypes associated with CJD subtypes. We therefore inoculated these mice with COs that had been infected with two CJD subtypes (MV1 and MV2) to see if the original subtype characteristics (referred to as strains once transmitted into a model organism) of the infecting prions were maintained in the COs when compared with the original human brain inocula. We found that disease characteristics caused by the molecular subtype of the disease associated prion protein were similar in mice inoculated with either CO derived material or human brain material, demonstrating that the disease associated prions generated in COs shared strain characteristics with those in humans. As the first and only in vitro model of human neurodegenerative disease that can faithfully reproduce different subtypes of prion disease, these findings support the use of the CO model for investigating human prion diseases and their subtypes.


Subject(s)
Creutzfeldt-Jakob Syndrome , Neurodegenerative Diseases , Prion Diseases , Prions , Humans , Mice , Animals , Creutzfeldt-Jakob Syndrome/metabolism , Mice, Transgenic , Prion Proteins/genetics , Prion Proteins/metabolism , Neurodegenerative Diseases/metabolism , Brain/metabolism , Prions/metabolism , Prion Diseases/metabolism , Organoids/metabolism
9.
Neurol Sci ; 44(3): 919-930, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36394661

ABSTRACT

Down syndrome is a common genetic disorder caused by partial or complete triplication of chromosome 21. This syndrome shows an overall and progressive impairment of olfactory function, detected early in adulthood. The olfactory neuronal cells are located in the nasal olfactory mucosa and represent the first sensory neurons of the olfactory pathway. Herein, we applied the olfactory swabbing procedure to allow a gentle collection of olfactory epithelial cells in seven individuals with Down syndrome and in ten euploid controls. The aim of this research was to investigate the peripheral gene expression pattern in olfactory epithelial cells through RNAseq analysis. Validated tests (Sniffin' Sticks Extended test) were used to assess olfactory function. Olfactory scores were correlated with RNAseq results and cognitive scores (Vineland II and Leiter scales). All Down syndrome individuals showed both olfactory deficit and intellectual disability. Down syndrome individuals and euploid controls exhibited clear expression differences in genes located in and outside the chromosome 21. In addition, a significant correlation was found between olfactory test scores and gene expression, while a non-significant correlation emerged between olfactory and cognitive scores. This first preliminary step gives new insights into the Down syndrome olfactory system research, starting from the olfactory neuroepithelium, the first cellular step on the olfactory way.


Subject(s)
Down Syndrome , Olfaction Disorders , Humans , Pilot Projects , Olfaction Disorders/etiology , Odorants , Smell/physiology
10.
Acta Neurol Belg ; 123(4): 1553-1556, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35852764

ABSTRACT

We report the case of a 70-year-old man coming to our attention for new onset refractory status epilepticus (NORSE) in a rapidly evolving CJD during SARS-CoV-2 co-infection. Our case report describes a fulminant CJD evolution associated with SARS-CoV-2 infection, which led to patient death after 15 days from admission. First EEG presented continuous diffuse spikes, sharp waves and sharp-and-slow wave complexes, pattern consistent with a non-convulsive status epilepticus (NORSE). Our case supports how CJD with SARS-CoV-2 co-infection could be characterized by an accelerated evolution, as already hypothesize for others microorganism infections, and how the diagnosis might be more challenging due to its uncommon presentations, such as NORSE.


Subject(s)
COVID-19 , Coinfection , Creutzfeldt-Jakob Syndrome , Status Epilepticus , Male , Humans , Aged , Creutzfeldt-Jakob Syndrome/complications , Creutzfeldt-Jakob Syndrome/diagnosis , Fatal Outcome , Coinfection/complications , Electroencephalography , COVID-19/complications , SARS-CoV-2 , Status Epilepticus/etiology
11.
J Alzheimers Dis Rep ; 6(1): 431-442, 2022.
Article in English | MEDLINE | ID: mdl-36186723

ABSTRACT

Background: An 82-year-old right-handed man, a retired teacher, reported the occurrence, three years earlier, of difficulties in moving his left arm and foot, tremor in his left hand, and gestures of the left upper limb that appeared to be independent of the patient's will. Objective: We describe an unusual case of corticobasal syndrome (CBS) showing disease-associated biomarkers of dementia with Lewy bodies (DLB). Methods: Clinical, neuropsychological, imaging, and biomarker evaluations were conducted, including tau and amyloid-ß levels in the cerebrospinal fluid (CSF) and a RT-QuIC assay for α-synuclein both in the CSF and olfactory mucosa (OM), as well as a QEEG assessment. Results: The patient presented resting tremor, mild extrapyramidal hypertonus, mild bradykinesia on the left side, and severe apraxia on the left upper limb. Brain MRI showed a diffuse right hemisphere atrophy which was prominent in the posterior parietal and temporal cortices, and moderate in the frontal cortex and the precuneus area. 18F-FDG PET imaging showed reduced glucose metabolism in the right lateral parietal, temporal, and frontal cortices with involvement of the right precuneus. The putamen did not appear to be pathological at DaTQUANT. Neuropsychological tests showed memory and visual-perceptual deficits. CSF tau and amyloid measurements did not show clear pathological values. RT-QuIC for α-synuclein in CSF and OM samples were positive. The QEEG analysis showed a pre-alpha dominant frequency in posterior derivations, typical of early stages of DLB. Conclusion: Although in the present patient the clinical diagnosis was of probable CBS, unexpectedly positive biomarkers for DLB suggested the co-presence of multiple pathologies.

12.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36142123

ABSTRACT

Genetic Creutzfeldt-Jakob disease (gCJD) associated with the V180I mutation in the prion protein (PrP) gene (PRNP) in phase with residue 129M is the most frequent cause of gCJD in East Asia, whereas it is quite uncommon in Caucasians. We report on a gCJD patient with the rare V180I-129V haplotype, showing an unusually long duration of the disease and a characteristic pathological PrP (PrPSc) glycotype. Family members carrying the mutation were fully asymptomatic, as commonly observed with this mutation. Neuropathological examination showed a lesion pattern corresponding to that commonly reported in Japanese V180I cases with vacuolization and gliosis of the cerebral cortexes, olfactory areas, hippocampus and amygdala. PrP was deposited with a punctate, synaptic-like pattern in the cerebral cortex, amygdala and olfactory tract. Western blot analyses of proteinase-K-resistant PrP showed the characteristic two-banding pattern of V180I gCJD, composed of mono- and un-glycosylated isoforms. In line with reports on other V180I cases in the literature, Real-Time Quaking Induced Conversion (RT-QuIC) analyses did not demonstrate the presence of seeding activity in the cerebrospinal fluid and olfactory mucosa, suggesting that this haplotype also may result in a reduced seeding efficiency of the pathological PrP. Further studies are required to understand the origin, penetrance, disease phenotype and transmissibility of 180I-129V haplotype in Caucasians.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prions , Brain/metabolism , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/pathology , Endopeptidase K/metabolism , Haplotypes , Humans , Prion Proteins/genetics , Prion Proteins/metabolism , Prions/metabolism
14.
Transl Neurodegener ; 11(1): 37, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902902

ABSTRACT

BACKGROUND: In patients with Parkinson's disease (PD), real-time quaking-induced conversion (RT-QuIC) detection of pathological α-synuclein (α-syn) in olfactory mucosa (OM) is not as accurate as in other α-synucleinopathies. It is unknown whether these variable results might be related to a different distribution of pathological α-syn in OM. Thus, we investigated whether nasal swab (NS) performed in areas with a different coverage by olfactory neuroepithelium, such as agger nasi (AN) and middle turbinate (MT), might affect the detection of pathological α-syn. METHODS: NS was performed in 66 patients with PD and 29 non-PD between September 2018 and April 2021. In 43 patients, cerebrospinal fluid (CSF) was also obtained and all samples were analyzed by RT-QuIC for α-syn. RESULTS: In the first round, 72 OM samples were collected by NS, from AN (NSAN) or from MT (NSMT), and 35 resulted positive for α-syn RT-QuIC, including 27/32 (84%) from AN, 5/11 (45%) from MT, and 3/29 (10%) belonging to the non-PD patients. Furthermore, 23 additional PD patients underwent NS at both AN and MT, and RT-QuIC revealed α-syn positive in 18/23 (78%) NSAN samples and in 10/23 (44%) NSMT samples. Immunocytochemistry of NS preparations showed a higher representation of olfactory neural cells in NSAN compared to NSMT. We also observed α-syn and phospho-α-syn deposits in NS from PD patients but not in controls. Finally, RT-QuIC was positive in 22/24 CSF samples from PD patients (92%) and in 1/19 non-PD. CONCLUSION: In PD patients, RT-QuIC sensitivity is significantly increased (from 45% to 84%) when NS is performed at AN, indicating that α-syn aggregates are preferentially detected in olfactory areas with higher concentration of olfactory neurons. Although RT-QuIC analysis of CSF showed a higher diagnostic accuracy compared to NS, due to the non-invasiveness, NS might be considered as an ancillary procedure for PD diagnosis.


Subject(s)
Parkinson Disease , Synucleinopathies , Humans , Olfactory Mucosa/chemistry , Olfactory Mucosa/pathology , Parkinson Disease/diagnosis , Parkinson Disease/pathology , Smell , alpha-Synuclein/cerebrospinal fluid
15.
Eur J Neurol ; 29(8): 2431-2438, 2022 08.
Article in English | MEDLINE | ID: mdl-35524506

ABSTRACT

BACKGROUND AND PURPOSE: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) has a high degree of sensitivity and specificity for the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) and this has led to its being included in revised European CJD Surveillance Network diagnostic criteria for sCJD. As CSF RT-QuIC becomes more widely established, it is crucial that the analytical performance of individual laboratories is consistent. The aim of this ring-trial was to ascertain the degree of concordance between European countries undertaking CSF RT-QuIC. METHODS: Ten identical CSF samples, seven from probable or neuropathologically confirmed sCJD and three from non-CJD cases, were sent to 13 laboratories from 11 countries for RT-QuIC analysis. A range of instrumentation and different recombinant prion protein substrates were used. Each laboratory analysed the CSF samples blinded to the diagnosis and reported the results as positive or negative. RESULTS: All 13 laboratories correctly identified five of the seven sCJD cases and the remaining two sCJD cases were identified by 92% of laboratories. Of the two sCJD cases that were not identified by all laboratories, one had a disease duration >26 months with a negative 14-3-3, whilst the remaining case had a 4-month disease duration and a positive 14-3-3. A single false positive CSF RT-QuIC result was observed in this study. CONCLUSIONS: This study shows that CSF RT-QuIC demonstrates an excellent concordance between centres, even when using a variety of instrumentation, recombinant prion protein substrates and CSF volumes. The adoption of CSF RT-QuIC by all CJD surveillance centres is recommended.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prions , Creutzfeldt-Jakob Syndrome/cerebrospinal fluid , Creutzfeldt-Jakob Syndrome/diagnosis , Humans , Prion Proteins , Prions/cerebrospinal fluid , Recombinant Proteins , Sensitivity and Specificity
16.
PLoS One ; 17(4): e0266740, 2022.
Article in English | MEDLINE | ID: mdl-35413071

ABSTRACT

The aim of the present study is to detect the presence of SARS-CoV-2 of patients affected by COVID-19 in olfactory mucosa (OM), sampled with nasal brushing (NB) and biopsy, and to assess whether a non-invasive procedure, such as NB, might be used as a large-scale procedure for demonstrating SARS-CoV-2 presence in olfactory neuroepithelium. Nasal brushings obtained from all the COVID-19 patients resulted positive to SARS-CoV-2 immunocytochemistry while controls were negative. Double immunofluorescence showed that SARS-CoV-2 positive cells included supporting cells as well as olfactory neurons and basal cells. OM biopsies showed an uneven distribution of SARS-CoV-2 positivity along the olfactory neuroepithelium, while OM from controls were negative. SARS-CoV-2 was distinctively found in sustentacular cells, olfactory neurons, and basal cells, supporting what was observed in NB. Ultrastructural analysis of OM biopsies showed SARS-CoV-2 viral particles in the cytoplasm of sustentacular cells. This study shows the presence of SARS-CoV-2 at the level of the olfactory neuroepithelium in patients affected by COVID-19. For the first time, we used NB as a rapid non-invasive tool for assessing a potential neuroinvasion by SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Biopsy , COVID-19/diagnosis , Humans , Olfactory Mucosa/pathology
17.
Front Aging Neurosci ; 14: 848991, 2022.
Article in English | MEDLINE | ID: mdl-35401151

ABSTRACT

Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare neurodegenerative disorder caused by the conformational conversion of the prion protein (PrPC) into an abnormally folded form, named prion (or PrPSc). The combination of the polymorphism at codon 129 of the PrP gene (coding either methionine or valine) with the biochemical feature of the proteinase-K resistant PrP (generating either PrPSc type 1 or 2) gives rise to different PrPSc strains, which cause variable phenotypes of sCJD. The definitive diagnosis of sCJD and its classification can be achieved only post-mortem after PrPSc identification and characterization in the brain. By exploiting the Real-Time Quaking-Induced Conversion (RT-QuIC) assay, traces of PrPSc were found in the olfactory mucosa (OM) of sCJD patients, thus demonstrating that PrPSc is not confined to the brain. Here, we have optimized another technique, named protein misfolding cyclic amplification (PMCA) for detecting PrPSc in OM samples of sCJD patients. OM samples were collected from 27 sCJD and 2 genetic CJD patients (E200K). Samples from 34 patients with other neurodegenerative disorders were included as controls. Brains were collected from 26 sCJD patients and 16 of them underwent OM collection. Brain and OM samples were subjected to PMCA using the brains of transgenic mice expressing human PrPC with methionine at codon 129 as reaction substrates. The amplified products were analyzed by Western blot after proteinase K digestion. Quantitative PMCA was performed to estimate PrPSc concentration in OM. PMCA enabled the detection of prions in OM samples with 79.3% sensitivity and 100% specificity. Except for a few cases, a predominant type 1 PrPSc was generated, regardless of the tissues analyzed. Notably, all amplified PrPSc were less resistant to PK compared to the original strain. In conclusion, although the optimized PMCA did not consent to recognize sCJD subtypes from the analysis of OM collected from living patients, it enabled us to estimate for the first time the amount of prions accumulating in this biological tissue. Further assay optimizations are needed to faithfully amplify peripheral prions whose recognition could lead to a better diagnosis and selection of patients for future clinical trials.

18.
Mol Neurobiol ; 59(6): 3778-3799, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35416570

ABSTRACT

Serpins represent the most broadly distributed superfamily of proteases inhibitors. They contribute to a variety of physiological functions and any alteration of the serpin-protease equilibrium can lead to severe consequences. SERPINA3 dysregulation has been associated with Alzheimer's disease (AD) and prion diseases. In this study, we investigated the differential expression of serpin superfamily members in neurodegenerative diseases. SERPIN expression was analyzed in human frontal cortex samples from cases of sporadic Creutzfeldt-Jakob disease (sCJD), patients at early stages of AD-related pathology, and age-matched controls not affected by neurodegenerative disorders. In addition, we studied whether Serpin expression was dysregulated in two animal models of prion disease and AD.Our analysis revealed that, besides the already observed upregulation of SERPINA3 in patients with prion disease and AD, SERPINB1, SERPINB6, SERPING1, SERPINH1, and SERPINI1 were dysregulated in sCJD individuals compared to controls, while only SERPINB1 was upregulated in AD patients. Furthermore, we analyzed whether other serpin members were differentially expressed in prion-infected mice compared to controls and, together with SerpinA3n, SerpinF2 increased levels were observed. Interestingly, SerpinA3n transcript and protein were upregulated in a mouse model of AD. The SERPINA3/SerpinA3nincreased anti-protease activity found in post-mortem brain tissue of AD and prion disease samples suggest its involvement in the neurodegenerative processes. A SERPINA3/SerpinA3n role in neurodegenerative disease-related protein aggregation was further corroborated by in vitro SerpinA3n-dependent prion accumulation changes. Our results indicate SERPINA3/SerpinA3n is a potential therapeutic target for the treatment of prion and prion-like neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Creutzfeldt-Jakob Syndrome , Neurodegenerative Diseases , Prion Diseases , Serpins , Acute-Phase Proteins , Alzheimer Disease/pathology , Animals , Brain/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Humans , Mice , Neurodegenerative Diseases/metabolism , Prion Diseases/metabolism , Prions/metabolism
19.
JAMA Netw Open ; 5(1): e2146319, 2022 01 04.
Article in English | MEDLINE | ID: mdl-35099544

ABSTRACT

Importance: Sporadic Creutzfeldt-Jakob disease (sCJD) is a rapidly lethal disease. Rapid, accurate diagnosis is imperative for epidemiological surveillance and public health activities to exclude treatable differentials and facilitate supportive care. In 2017, the International CJD Surveillance Network diagnostic criteria were revised to incorporate cortical ribboning on magnetic resonance imaging and the real-time quaking-induced conversion (RT-QuIC) assay, developments that require multicenter evaluation. Objective: To evaluate the accuracy of revised diagnostic criteria through the retrospective diagnosis of autopsy-confirmed cases (referred to as in-life diagnosis). Design, Setting, and Participants: This diagnostic study used a 3-year clinicopathological series using all cases of autopsy-confirmed sCJD and a noncase group with alternative neuropathological diagnoses from national surveillance centers in the United Kingdom, France, Germany, and Italy. Data were collected from January 2017 to December 2019 and analyzed from January 2020 to November 2021. Main Outcomes and Measures: Sensitivity and specificity of revised diagnostic criteria and diagnostic investigations. Secondary analyses assessing sCJD subgroups by genotype, pathological classification, disease duration, and age. Results: A total of 501 sCJD cases and 146 noncases were included. Noncase diagnoses included neurodegenerative diseases, autoimmune encephalitis, and cerebral insults such as anoxia. Participants in the sCJD cases cohort were younger (mean [SD] age, 68.8 [9.8] years vs 72.8 [10.9] years; P < .001) and had longer median (IQR) disease duration (118 [74.8-222.3] days vs 85 [51.5-205.5] days; P = .002); sex ratios were equivalent (253 [50.5%] male cases vs 74 [50.7%] male noncases). Sensitivity of revised criteria in in-life diagnosis (450 of 488 [92.2%] diagnoses; 95% CI, 89.5%-94.4%) was increased compared with prior criteria (378 of 488 [77.5%] diagnoses; 95% CI, 73.5%-81.1%; P < .001), while specificity (101 of 125 [80.8%] diagnoses; 95% CI, 72.8%-87.3%) was unchanged (102 of 125 [81.6%] diagnoses; 95% CI, 73.7%-88.0%; P > .99). Among 223 cases and 52 noncases with the full panel of investigations performed, sensitivity of revised criteria (97.8%; 95% CI, 94.9%-99.3%) was increased compared with prior criteria (76.2%; 95% CI, 70.1%-81.7%; P < .001) while specificity was unchanged (67.3%; 95% CI, 52.9%-79.7% vs 69.2%; 95% CI, 54.9%-81.3%; P > .99). In 455 cases and 111 noncases, cortical ribboning was 67.9% sensitive (95% CI, 63.4%-72.2%) and 86.5% specific (95% CI, 78.7%-92.2%). In 274 cases and 77 noncases, RT-QuIC was 91.6% sensitive (95% CI, 87.7%-94.6%) and 100% specific (95% CI, 96.2%-100%). Investigation sensitivity varied with genetic and pathological features, disease duration, and age. Conclusions and Relevance: This diagnostic study demonstrated significantly improved sensitivity of revised sCJD diagnostic criteria with unaltered specificity. The revision has enhanced diagnostic accuracy for clinical care and surveillance.


Subject(s)
Creutzfeldt-Jakob Syndrome/diagnosis , Diagnostic Techniques, Neurological/standards , Population Surveillance/methods , Aged , Autopsy , Female , France , Germany , Humans , Italy , Magnetic Resonance Imaging , Male , Retrospective Studies , Sensitivity and Specificity , United Kingdom
20.
Neurol Sci ; 43(1): 99-104, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34601698

ABSTRACT

OBJECTIVE: It is reported that recovery from COVID-19 chemosensory deficit generally occurs in a few weeks, although olfactory dysfunction may persist longer. Here, we provide a detailed follow-up clinical investigation in a very young female patient (17-year-old) with a long-lasting anosmia after a mild infection, with partial recovery 15 months after the onset. METHODS: Neuroimaging and neurophysiologic assessments as well as olfactory mucosa swabbing for microbiological and immunocytochemical analyses were performed. Olfactory and gustatory evaluations were conducted through validated tests. RESULTS: Chemosensory evaluations were consistent with anosmia associated with parosmia phenomena and gustatory impairment, the latter less persistent. Brain MRI (3.0 T) showed no microvascular injury in olfactory bulbs and brain albeit we cannot rule out slight structural abnormalities during the acute phase, and a high-density EEG was negative. Immunocytochemistry of olfactory mucosa swabs showed high expression of ACE2 in sustentacular cells and lower dot-like cytoplasmic positivity in neuronal-shaped cells. DISCUSSION: The occurrence of long-term persistent olfactory deficit in spite of the absence of structural brain and olfactory bulb involvement supports the view of a possible persistent dysfunction of both sustentacular cells and olfactory neurons. The gustatory dysfunction even if less persisting for the described features could be related to a primary gustatory system involvement. Future longitudinal studies are needed to investigate the persistence of chemosensory impairment, which could have a relevant impact on the daily life.


Subject(s)
COVID-19 , Olfaction Disorders , Adolescent , Female , Humans , Olfaction Disorders/etiology , SARS-CoV-2 , Smell , Taste Disorders
SELECTION OF CITATIONS
SEARCH DETAIL
...