Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters











Publication year range
1.
Commun Biol ; 7(1): 179, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351154

ABSTRACT

The translocated intimin receptor (Tir) is an essential type III secretion system (T3SS) effector of attaching and effacing pathogens contributing to the global foodborne disease burden. Tir acts as a cell-surface receptor in host cells, rewiring intracellular processes by targeting multiple host proteins. We investigated the molecular basis for Tir's binding diversity in signalling, finding that Tir is a disordered protein with host-like binding motifs. Unexpectedly, also are several other T3SS effectors. By an integrative approach, we reveal that Tir dimerises via an antiparallel OB-fold within a highly disordered N-terminal cytosolic domain. Also, it has a long disordered C-terminal cytosolic domain partially structured at host-like motifs that bind lipids. Membrane affinity depends on lipid composition and phosphorylation, highlighting a previously unrecognised host interaction impacting Tir-induced actin polymerisation and cell death. Furthermore, multi-site tyrosine phosphorylation enables Tir to engage host SH2 domains in a multivalent fuzzy complex, consistent with Tir's scaffolding role and binding promiscuity. Our findings provide insights into the intracellular Tir domains, highlighting the ability of T3SS effectors to exploit host-like protein disorder as a strategy for host evasion.


Subject(s)
Escherichia coli Proteins , Escherichia coli Proteins/metabolism , Carrier Proteins , Receptors, Cell Surface/metabolism
2.
Nat Biotechnol ; 41(1): 140-149, 2023 01.
Article in English | MEDLINE | ID: mdl-36217029

ABSTRACT

Understanding the mechanisms of coronavirus disease 2019 (COVID-19) disease severity to efficiently design therapies for emerging virus variants remains an urgent challenge of the ongoing pandemic. Infection and immune reactions are mediated by direct contacts between viral molecules and the host proteome, and the vast majority of these virus-host contacts (the 'contactome') have not been identified. Here, we present a systematic contactome map of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with the human host encompassing more than 200 binary virus-host and intraviral protein-protein interactions. We find that host proteins genetically associated with comorbidities of severe illness and long COVID are enriched in SARS-CoV-2 targeted network communities. Evaluating contactome-derived hypotheses, we demonstrate that viral NSP14 activates nuclear factor κB (NF-κB)-dependent transcription, even in the presence of cytokine signaling. Moreover, for several tested host proteins, genetic knock-down substantially reduces viral replication. Additionally, we show for USP25 that this effect is phenocopied by the small-molecule inhibitor AZ1. Our results connect viral proteins to human genetic architecture for COVID-19 severity and offer potential therapeutic targets.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Proteome/genetics , Post-Acute COVID-19 Syndrome , Virus Replication/genetics , Ubiquitin Thiolesterase/pharmacology
3.
Front Microbiol ; 13: 849781, 2022.
Article in English | MEDLINE | ID: mdl-35531299

ABSTRACT

Viral infections are one of the major causes of human diseases that cause yearly millions of deaths and seriously threaten global health, as we have experienced with the COVID-19 pandemic. Numerous approaches have been adopted to understand viral diseases and develop pharmacological treatments. Among them, the study of virus-host protein-protein interactions is a powerful strategy to comprehend the molecular mechanisms employed by the virus to infect the host cells and to interact with their components. Experimental protein-protein interactions described in the scientific literature have been systematically captured into several molecular interaction databases. These data are organized in structured formats and can be easily downloaded by users to perform further bioinformatic and network studies. Network analysis of available virus-host interactomes allow us to understand how the host interactome is perturbed upon viral infection and what are the key host proteins targeted by the virus and the main cellular pathways that are subverted. In this review, we give an overview of publicly available viral-human protein-protein interactions resources and the community standards, curation rules and adopted ontologies. A description of the main virus-human interactome available is provided, together with the main network analyses that have been performed. We finally discuss the main limitations and future challenges to assess the quality and reliability of protein-protein interaction datasets and resources.

4.
Nucleic Acids Res ; 48(12): 6491-6502, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32484544

ABSTRACT

Multifunctional proteins often perform their different functions when localized in different subcellular compartments. However, the mechanisms leading to their localization are largely unknown. Recently, 3'UTRs were found to regulate the cellular localization of newly synthesized proteins through the formation of 3'UTR-protein complexes. Here, we investigate the formation of 3'UTR-protein complexes involving multifunctional proteins by exploiting large-scale protein-protein and protein-RNA interaction networks. Focusing on 238 human 'extreme multifunctional' (EMF) proteins, we predicted 1411 3'UTR-protein complexes involving 54% of those proteins and evaluated their role in regulating protein cellular localization and multifunctionality. We find that EMF proteins lacking localization addressing signals, yet present at both the nucleus and cell surface, often form 3'UTR-protein complexes, and that the formation of these complexes could provide EMF proteins with the diversity of interaction partners necessary to their multifunctionality. Our findings are reinforced by archetypal moonlighting proteins predicted to form 3'UTR-protein complexes. Finally, the formation of 3'UTR-protein complexes that involves up to 17% of the proteins in the human protein-protein interaction network, may be a common and yet underestimated protein trafficking mechanism, particularly suited to regulate the localization of multifunctional proteins.


Subject(s)
3' Untranslated Regions , Membrane Proteins/metabolism , Protein Interaction Maps , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Humans , Membrane Proteins/chemistry , Protein Binding , Protein Biosynthesis , Protein Sorting Signals , Protein Transport , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA-Binding Proteins/chemistry
5.
Cell Mol Life Sci ; 76(22): 4407-4412, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31432235

ABSTRACT

Moonlighting proteins perform multiple unrelated functions without any change in polypeptide sequence. They can coordinate cellular activities, serving as switches between pathways and helping to respond to changes in the cellular environment. Therefore, regulation of the multiple protein activities, in space and time, is likely to be important for the homeostasis of biological systems. Some moonlighting proteins may perform their multiple functions simultaneously while others alternate between functions due to certain triggers. The switch of the moonlighting protein's functions can be regulated by several distinct factors, including the binding of other molecules such as proteins. We here review the approaches used to identify moonlighting proteins and existing repositories. We particularly emphasise the role played by short linear motifs and PTMs as regulatory switches of moonlighting functions.


Subject(s)
Proteins/metabolism , Animals , Cell Physiological Phenomena/physiology , Databases, Protein , Humans , Protein Conformation
6.
Int J Mol Sci ; 20(7)2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30959732

ABSTRACT

Chikungunya virus (CHIKV) and Zika virus (ZIKV) are emerging arboviruses that pose a worldwide threat to human health. Currently, neither vaccine nor antiviral treatment to control their infections is available. As the skin is a major viral entry site for arboviruses in the human host, we determined the global proteomic profile of CHIKV and ZIKV infections in human skin fibroblasts using Stable Isotope Labelling by Amino acids in Cell culture (SILAC)-based mass-spectrometry analysis. We show that the expression of the interferon-stimulated proteins MX1, IFIT1, IFIT3 and ISG15, as well as expression of defense response proteins DDX58, STAT1, OAS3, EIF2AK2 and SAMHD1 was significantly up-regulated in these cells upon infection with either virus. Exogenous expression of IFITs proteins markedly inhibited CHIKV and ZIKV replication which, accordingly, was restored following the abrogation of IFIT1 or IFIT3. Overexpression of SAMHD1 in cutaneous cells, or pretreatment of cells with the virus-like particles containing SAMHD1 restriction factor Vpx, resulted in a strong increase or inhibition, respectively, of both CHIKV and ZIKV replication. Moreover, silencing of SAMHD1 by specific SAMHD1-siRNA resulted in a marked decrease of viral RNA levels. Together, these results suggest that IFITs are involved in the restriction of replication of CHIKV and ZIKV and provide, as yet unreported, evidence for a proviral role of SAMHD1 in arbovirus infection of human skin cells.


Subject(s)
Chikungunya virus/physiology , Fibroblasts/metabolism , Fibroblasts/virology , SAM Domain and HD Domain-Containing Protein 1/metabolism , Skin/pathology , Virus Replication/physiology , Zika Virus/physiology , Cell Line , Chikungunya Fever/virology , Humans , Molecular Sequence Annotation , Protein Interaction Maps , Proteolysis , Up-Regulation , Viral Regulatory and Accessory Proteins/metabolism , Zika Virus Infection/virology
7.
Sci Rep ; 9(1): 4302, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30867517

ABSTRACT

The coordination of the synthesis of functionally-related proteins can be achieved at the post-transcriptional level by the action of common regulatory molecules, such as RNA-binding proteins (RBPs). Despite advances in the genome-wide identification of RBPs and their binding transcripts, the protein-RNA interaction space is still largely unexplored, thus hindering a broader understanding of the extent of the post-transcriptional regulation of related coding RNAs. Here, we propose a computational approach that combines protein-mRNA interaction networks and statistical analyses to provide an inferred regulatory landscape for more than 800 human RBPs and identify the cellular processes that can be regulated at the post-transcriptional level. We show that 10% of the tested sets of functionally-related mRNAs can be post-transcriptionally regulated. Moreover, we propose a classification of (i) the RBPs and (ii) the functionally-related mRNAs, based on their distinct behaviors in the functional landscape, hinting towards mechanistic regulatory hypotheses. In addition, we demonstrate the usefulness of the inferred functional landscape to investigate the cellular role of both well-characterized and novel RBPs in the context of human diseases.


Subject(s)
RNA Processing, Post-Transcriptional , RNA-Binding Proteins/metabolism , Gene Expression Regulation , Humans , Protein Interaction Maps , RNA, Messenger/physiology , Regulon , Transcriptome
8.
Nucleic Acids Res ; 46(2): 917-928, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29165713

ABSTRACT

The human transcriptome contains thousands of long non-coding RNAs (lncRNAs). Characterizing their function is a current challenge. An emerging concept is that lncRNAs serve as protein scaffolds, forming ribonucleoproteins and bringing proteins in proximity. However, only few scaffolding lncRNAs have been characterized and the prevalence of this function is unknown. Here, we propose the first computational approach aimed at predicting scaffolding lncRNAs at large scale. We predicted the largest human lncRNA-protein interaction network to date using the catRAPID omics algorithm. In combination with tissue expression and statistical approaches, we identified 847 lncRNAs (∼5% of the long non-coding transcriptome) predicted to scaffold half of the known protein complexes and network modules. Lastly, we show that the association of certain lncRNAs to disease may involve their scaffolding ability. Overall, our results suggest for the first time that RNA-mediated scaffolding of protein complexes and modules may be a common mechanism in human cells.


Subject(s)
Computational Biology/methods , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism , Algorithms , Genetic Predisposition to Disease/genetics , Humans , Protein Binding , Protein Interaction Maps , Proteome/genetics , Proteome/metabolism , RNA, Long Noncoding/genetics , RNA-Binding Proteins/genetics , Ribonucleoproteins/genetics , Transcriptome
9.
Microbiome ; 5(1): 89, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28793925

ABSTRACT

BACKGROUND: Fusobacterium nucleatum is a gram-negative anaerobic species residing in the oral cavity and implicated in several inflammatory processes in the human body. Although F. nucleatum abundance is increased in inflammatory bowel disease subjects and is prevalent in colorectal cancer patients, the causal role of the bacterium in gastrointestinal disorders and the mechanistic details of host cell functions subversion are not fully understood. RESULTS: We devised a computational strategy to identify putative secreted F. nucleatum proteins (FusoSecretome) and to infer their interactions with human proteins based on the presence of host molecular mimicry elements. FusoSecretome proteins share similar features with known bacterial virulence factors thereby highlighting their pathogenic potential. We show that they interact with human proteins that participate in infection-related cellular processes and localize in established cellular districts of the host-pathogen interface. Our network-based analysis identified 31 functional modules in the human interactome preferentially targeted by 138 FusoSecretome proteins, among which we selected 26 as main candidate virulence proteins, representing both putative and known virulence proteins. Finally, six of the preferentially targeted functional modules are implicated in the onset and progression of inflammatory bowel diseases and colorectal cancer. CONCLUSIONS: Overall, our computational analysis identified candidate virulence proteins potentially involved in the F. nucleatum-human cross-talk in the context of gastrointestinal diseases.


Subject(s)
Bacterial Proteins/isolation & purification , Fusobacterium Infections/microbiology , Fusobacterium nucleatum/pathogenicity , Gene Regulatory Networks , Virulence Factors/genetics , Bacterial Proteins/metabolism , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/physiopathology , Computers, Molecular , Databases, Genetic , Female , Fusobacterium Infections/physiopathology , Fusobacterium nucleatum/chemistry , Host-Pathogen Interactions/genetics , Humans , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/physiopathology , Male , Middle Aged , Signal Transduction/genetics
10.
Methods Mol Biol ; 1303: 435-46, 2016.
Article in English | MEDLINE | ID: mdl-26235083

ABSTRACT

Recent advances in the fields of genetics and genomics have enabled the identification of numerous Alzheimer's disease (AD) candidate genes, although for many of them the role in AD pathophysiology has not been uncovered yet. Concomitantly, network biology studies have shown a strong link between protein network connectivity and disease. In this chapter I describe a computational approach that, by combining local and global network analysis strategies, allows the formulation of novel hypotheses on the molecular mechanisms involved in AD and prioritizes candidate genes for further functional studies.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Computational Biology/methods , Protein Interaction Mapping/methods , Humans
11.
Methods ; 93: 103-9, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26386316

ABSTRACT

Quantitative proteomics allows the characterization of molecular changes between healthy and disease states. To interpret such datasets, their integration to the protein-protein interaction network provides a more comprehensive understanding of cellular function dysregulation in diseases than just considering lists of dysregulated proteins. Here, we propose a novel computational method, which combines protein interaction network and statistical analyses to establish expression profiles at the network module level rather than at the individual protein level, and to detect and characterize dysregulated network modules through different stages of cancer progression. We applied our approach to two publicly available datasets as case studies.


Subject(s)
Disease Progression , Neoplasms/genetics , Protein Interaction Mapping/methods , Protein Interaction Maps/genetics , Proteomics/methods , Databases, Protein , Humans , Neoplasms/diagnosis , Neoplastic Stem Cells/physiology
12.
Front Physiol ; 6: 171, 2015.
Article in English | MEDLINE | ID: mdl-26157390

ABSTRACT

Moonlighting proteins are a subset of multifunctional proteins characterized by their multiple, independent, and unrelated biological functions. We recently set up a large-scale identification of moonlighting proteins using a protein-protein interaction (PPI) network approach. We established that 3% of the current human interactome is composed of predicted moonlighting proteins. We found that disease-related genes are over-represented among those candidates. Here, by comparing moonlighting candidates to non-candidates as groups, we further show that (i) they are significantly involved in more than one disease, (ii) they contribute to complex rather than monogenic diseases, (iii) the diseases in which they are involved are phenotypically different according to their annotations, finally, (iv) they are enriched for diseases pairs showing statistically significant comorbidity patterns based on Medicare records. Altogether, our results suggest that some observed comorbidities between phenotypically different diseases could be due to a shared protein involved in unrelated biological processes.

13.
BMC Bioinformatics ; 16 Suppl 9: S1, 2015.
Article in English | MEDLINE | ID: mdl-26050789

ABSTRACT

This Preface introduces the content of the BioMed Central journal Supplements related to BITS2014 meeting, held in Rome, Italy, from the 26th to the 28th of February, 2014.


Subject(s)
Computational Biology , Humans , Societies, Scientific
15.
Infect Genet Evol ; 33: 84-94, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25913042

ABSTRACT

A cross-talk in host-parasite associations begins when a host encounters a parasite. For many host-parasite relationships, this cross-talk has been taking place for hundreds of millions of years. The co-evolution of hosts and parasites, the familiar 'arms race' results in fascinating adaptations. Over the years, host-parasite interactions have been studied extensively from both the host and parasitic point of view. Proteomics studies have led to new insights into host-parasite cross-talk and suggest that the molecular strategies used by parasites attacking animals and plants share many similarities. Likewise, animals and plants use several common molecular tactics to counter parasite attacks. Based on proteomics surveys undertaken since the post-genomic era, a synthesis is presented on the molecular strategies used by intra- and extracellular parasites to invade and create the needed habitat for growth inside the host, as well as strategies used by hosts to counter these parasite attacks. Pitfalls in deciphering host-parasite cross-talk are also discussed. To conclude, helpful advice is given with regard to new directions that are needed to discover the generic and specific molecular strategies used by the host against parasite invasion as well as by the parasite to invade, survive, and grow inside their hosts, and to finally discover parasitic molecular signatures associated with their development.


Subject(s)
Host-Parasite Interactions , Parasites/physiology , Proteomics , Animals , Humans , Proteomics/methods
16.
J Mol Biol ; 427(6 Pt B): 1436-1450, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25640309

ABSTRACT

Despite the remarkable progress achieved in the identification of specific genes involved in breast cancer (BC), our understanding of their complex functioning is still limited. In this manuscript, we systematically explore the existence of direct physical interactions between the products of BC core and associated genes. Our aim is to generate a protein interaction network of BC-associated gene products and suggest potential molecular mechanisms to unveil their role in the disease. In total, we report 599 novel high-confidence interactions among 44 BC core, 54 BC candidate/associated and 96 newly identified proteins. Our findings indicate that this network-based approach is indeed a robust inference tool to pinpoint new potential players and gain insight into the underlying mechanisms of those proteins with previously unknown roles in BC. To illustrate the power of our approach, we provide initial validation of two BC-associated proteins on the alteration of DNA damage response as a result of specific re-wiring interactions. Overall, our BC-related network may serve as a framework to integrate clinical and molecular data and foster novel global therapeutic strategies.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Computational Biology/methods , Gene Regulatory Networks , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Interaction Maps , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cells, Cultured , DNA Damage/genetics , Female , Fluorescent Antibody Technique , Genetic Predisposition to Disease , Humans , Immunoprecipitation , Oligonucleotide Array Sequence Analysis , Two-Hybrid System Techniques
17.
Trends Biochem Sci ; 40(1): 36-48, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25475989

ABSTRACT

Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.


Subject(s)
Amino Acid Motifs/genetics , Host-Pathogen Interactions/genetics , Molecular Mimicry/genetics , Viruses/genetics , Animals , Binding Sites , Humans , Plants/genetics , Plants/virology , Protein Interaction Maps/genetics , Virulence/genetics , Viruses/pathogenicity
18.
PLoS One ; 9(6): e100791, 2014.
Article in English | MEDLINE | ID: mdl-24967735

ABSTRACT

Intracellular pathogens including bacteria, viruses and protozoa hijack host cell functions to access nutrients and to bypass cellular defenses and immune responses. These strategies have been acquired through selective pressure and allowed pathogens to reach an appropriate cellular niche for their survival and growth. To get new insights on how parasites hijack host cellular functions, we developed a SILAC (Stable Isotope Labeling by Amino Acids in Cell culture) quantitative proteomics workflow. Our study focused on deciphering the cross-talk in a host-parasite association, involving human foreskin fibroblasts (HFF) and the microsporidia Anncaliia algerae, a fungus related parasite with an obligate intracellular lifestyle and a strong host dependency. The host-parasite cross-talk was analyzed at five post-infection times 1, 6, 12 and 24 hours post-infection (hpi) and 8 days post-infection (dpi). A significant up-regulation of four interferon-induced proteins with tetratricopeptide repeats IFIT1, IFIT2, IFIT3 and MX1 was observed at 8 dpi suggesting a type 1 interferon (IFN) host response. Quantitative alteration of host proteins involved in biological functions such as signaling (STAT1, Ras) and reduction of the translation activity (EIF3) confirmed a host type 1 IFN response. Interestingly, the SILAC approach also allowed the detection of 148 A. algerae proteins during the kinetics of infection. Among these proteins many are involved in parasite proliferation, and an over-representation of putative secreted effectors proteins was observed. Finally our survey also suggests that A. algerae could use a transposable element as a lure strategy to escape the host innate immune system.


Subject(s)
Host-Parasite Interactions , Intracellular Space/parasitology , Microsporidia/physiology , DNA Transposable Elements/genetics , Fibroblasts/cytology , Fibroblasts/parasitology , Fungal Proteins/metabolism , Humans , Intracellular Space/metabolism , Microsporidia/genetics , Microsporidia/metabolism , Proteome
19.
Bioinformatics ; 30(11): 1601-8, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24493033

ABSTRACT

MOTIVATION: The recent shift towards high-throughput screening is posing new challenges for the interpretation of experimental results. Here we propose the cleverSuite approach for large-scale characterization of protein groups. DESCRIPTION: The central part of the cleverSuite is the cleverMachine (CM), an algorithm that performs statistics on protein sequences by comparing their physico-chemical propensities. The second element is called cleverClassifier and builds on top of the models generated by the CM to allow classification of new datasets. RESULTS: We applied the cleverSuite to predict secondary structure properties, solubility, chaperone requirements and RNA-binding abilities. Using cross-validation and independent datasets, the cleverSuite reproduces experimental findings with great accuracy and provides models that can be used for future investigations. AVAILABILITY: The intuitive interface for dataset exploration, analysis and prediction is available at http://s.tartaglialab.com/clever_suite.


Subject(s)
Molecular Chaperones/chemistry , Proteins/chemistry , RNA-Binding Proteins/chemistry , Software , Algorithms , Intrinsically Disordered Proteins/chemistry , Molecular Chaperones/metabolism , Protein Structure, Secondary , RNA-Binding Proteins/metabolism , Sequence Analysis, Protein , Solubility
20.
Nucleic Acids Res ; 41(22): 9987-98, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24003031

ABSTRACT

Previous evidence indicates that a number of proteins are able to interact with cognate mRNAs. These autogenous associations represent important regulatory mechanisms that control gene expression at the translational level. Using the catRAPID approach to predict the propensity of proteins to bind to RNA, we investigated the occurrence of autogenous associations in the human proteome. Our algorithm correctly identified binding sites in well-known cases such as thymidylate synthase, tumor suppressor P53, synaptotagmin-1, serine/ariginine-rich splicing factor 2, heat shock 70 kDa, ribonucleic particle-specific U1A and ribosomal protein S13. In addition, we found that several other proteins are able to bind to their own mRNAs. A large-scale analysis of biological pathways revealed that aggregation-prone and structurally disordered proteins have the highest propensity to interact with cognate RNAs. These findings are substantiated by experimental evidence on amyloidogenic proteins such as TAR DNA-binding protein 43 and fragile X mental retardation protein. Among the amyloidogenic proteins, we predicted that Parkinson's disease-related α-synuclein is highly prone to interact with cognate transcripts, which suggests the existence of RNA-dependent factors in its function and dysfunction. Indeed, as aggregation is intrinsically concentration dependent, it is possible that autogenous interactions play a crucial role in controlling protein homeostasis.


Subject(s)
RNA-Binding Proteins/metabolism , RNA/metabolism , alpha-Synuclein/metabolism , Algorithms , Binding Sites , Gene Expression Regulation , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Biosynthesis , RNA/chemistry , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Ribonucleoproteins/chemistry , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Serine-Arginine Splicing Factors , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL