Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Npj Spintron ; 2(1): 14, 2024.
Article in English | MEDLINE | ID: mdl-38883426

ABSTRACT

Magnetic random access memory (MRAM) is a leading emergent memory technology that is poised to replace current non-volatile memory technologies such as eFlash. However, controlling and improving distributions of device properties becomes a key enabler of new applications at this stage of technology development. Here, we introduce a non-contact metrology technique deploying scanning NV magnetometry (SNVM) to investigate MRAM performance at the individual bit level. We demonstrate magnetic reversal characterization in individual, <60 nm-sized bits, to extract key magnetic properties, thermal stability, and switching statistics, and thereby gauge bit-to-bit uniformity. We showcase the performance of our method by benchmarking two distinct bit etching processes immediately after pattern formation. In contrast to ensemble averaging methods such as perpendicular magneto-optical Kerr effect, we show that it is possible to identify out of distribution (tail-bits) bits that seem associated to the edges of the array, enabling failure analysis of tail bits. Our findings highlight the potential of nanoscale quantum sensing of MRAM devices for early-stage screening in the processing line, paving the way for future incorporation of this nanoscale characterization tool in the semiconductor industry.

2.
ACS Appl Nano Mater ; 7(4): 3854-3860, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38420184

ABSTRACT

Focused-electron-beam-induced deposition is a promising technique for patterning nanomagnets in a single step. We fabricate cobalt nanomagnets in such a process and characterize their content, saturation magnetization, and stray magnetic field profiles by using a combination of transmission electron microscopy and scanning nitrogen-vacancy (NV) magnetometry. We find agreement between the measured stray field profiles and saturation magnetization with micromagnetic simulations. We further characterize magnetic domains and grainy stray magnetic fields in the nanomagnets and their halo side-deposits. This work may aid in the evaluation of Co nanomagnets produced through focused electron-beam-induced deposition for applications in spin qubits, magnetic field sensing, and magnetic logic.

SELECTION OF CITATIONS
SEARCH DETAIL