Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793342

ABSTRACT

This study presents a novel approach for improving the interfacial adhesion between Nd-Fe-B spherical magnetic powders and polyamide 12 (PA12) in polymer-bonded magnets using plasma treatments. By applying radio frequency plasma to the magnetic powder and low-pressure microwave plasma to PA12, we achieved a notable enhancement in the mechanical and environmental stability of fused deposition modeling (FDM)-printed Nd-Fe-B/PA12 magnets. The densities of the FDM-printed materials ranged from 92% to 94% of their theoretical values, with magnetic remanence (Br) ranging from 85% to 89% of the theoretical values across all batches. The dual plasma-treated batch demonstrated an optimal mechanical profile with an elastic modulus of 578 MPa and the highest ductility at 21%, along with a tensile strength range of 6 to 7 MPa across all batches. Flexural testing indicated that this batch also achieved the highest flexural strength of 15 MPa with a strain of 5%. Environmental stability assessments confirmed that applied plasma treatments did not compromise resistance to corrosion, evidenced by negligible flux loss in both hygrothermal and bulk corrosion tests. These results highlight plasma treatment's potential to enhance mechanical strength, magnetic performance, and environmental stability.

2.
Polymers (Basel) ; 16(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38794574

ABSTRACT

The wettability of polymers is usually inadequate to ensure the appropriate spreading of polar liquids and thus enable the required adhesion of coatings. A standard ecologically benign method for increasing the polymer wettability is a brief treatment with a non-equilibrium plasma rich in reactive oxygen species and predominantly neutral oxygen atoms in the ground electronic state. The evolution of the surface wettability of selected aromatic polymers was investigated by water droplet contact angles deposited immediately after exposing polymer samples to fluxes of oxygen atoms between 3 × 1020 and 1 × 1023 m-2s-1. The treatment time varied between 0.01 and 1000 s. The wettability evolution versus the O-atom fluence for all aromatic polymers followed similar behavior regardless of the flux of O atoms or the type of polymer. In the range of fluences between approximately 5 × 1020 and 5 × 1023 m-2, the water contact angle decreased exponentially with increasing fluence and dropped to 1/e of the initial value after receiving the fluence close to 5 × 1022 m-2.

3.
Polymers (Basel) ; 16(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38543394

ABSTRACT

Cellulose is an abundant natural polymer and is thus promising for enforcing biobased plastics. A broader application of cellulose fibers as a filler in polymer composites is limited because of their hydrophilicity and hygroscopicity. The recent scientific literature on plasma methods for the hydrophobization of cellulose materials is reviewed and critically evaluated. All authors focused on the application of plasmas sustained in fluorine or silicon-containing gases, particularly tetrafluoromethane, and hexamethyldisiloxane. The cellulose materials should be pre-treated with another plasma (typically oxygen) for better adhesion of the silicon-containing hydrophobic coating. In contrast, deposition of fluorine-containing coatings does not require pre-treatment, which is explained by mild etching of the cellulose upon treatment with F atoms and ions. The discrepancy between the results reported by different authors is explained by details in the gas phase and surface kinetics, including the heating of samples due to exothermic surface reactions, desorption of water vapor, competition between etching and deposition, the influence of plasma radiation, and formation of dusty plasma. Scientific and technological challenges are highlighted, and the directions for further research are provided.

4.
Environ Int ; 182: 108285, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37972530

ABSTRACT

Water scarcity, one of the most pressing challenges we face today, has developed for many reasons, including the increasing number of waterborne pollutants that affect the safety of the water environment. Waterborne human, animal and plant viruses represent huge health, environmental, and financial burden and thus it is important to efficiently inactivate them. Therefore, the main objective of this study was to construct a unique device combining plasma with supercavitation and to evaluate its efficiency for water decontamination with the emphasis on inactivation of viruses. High inactivation (>5 log10 PFU/mL) of bacteriophage MS2, a human enteric virus surrogate, was achieved after treatment of 0.43 L of recirculating water for up to 4 min. The key factors in the inactivation were short-lived reactive plasma species that damaged viral RNA. Water treated with plasma for a short time required for successful virus inactivation did not cause cytotoxic effects in the in vitro HepG2 cell model system or adverse effects on potato plant physiology. Therefore, the combined plasma-supercavitation device represents an environmentally-friendly technology that could provide contamination-free and safe water.


Subject(s)
Plasma Gases , Viruses , Animals , Humans , Water , Plasma Gases/pharmacology , Virus Inactivation
5.
Materials (Basel) ; 16(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687497

ABSTRACT

Calorimetry is a commonly used method in plasma characterization, but the accuracy of the method is tied to the accuracy of the recombination coefficient, which in turn depends on a number of surface effects. Surface effects also govern the kinetics in advanced methods such as atomic layer oxidation of inorganic materials and functionalization of organic materials. The flux of the reactive oxygen atoms for the controlled oxidation of such materials depends on the recombination coefficient of materials placed into the reaction chamber, which in turn depends on the surface morphology, temperature, and pressure in the processing chamber. The recombination coefficient of a well-oxidized cobalt surface was studied systematically in a range of temperatures from 300 to 800 K and pressures from 40 to 200 Pa. The coefficient increased monotonously with decreasing pressure and increasing temperature. The lowest value was about 0.05, and the highest was about 0.30. These values were measured for cobalt foils previously oxidized with oxygen plasma at the temperature of 1300 K. The oxidation caused a rich morphology with an average roughness as deduced from atomic force images of 0.9 µm. The results were compared with literature data, and the discrepancy between results reported by different authors was explained by taking into account the peculiarities of their experimental conditions.

6.
J Fungi (Basel) ; 9(6)2023 May 25.
Article in English | MEDLINE | ID: mdl-37367545

ABSTRACT

Fungi are the leading cause of plant diseases worldwide and are responsible for enormous agricultural and industrial losses on a global scale. Cold plasma (CP) is a potential tool for eliminating or inactivating fungal contaminants from biological material such as seeds and grains. This study used a low-pressure radiofrequency CP system with oxygen as the feed gas to test the decontamination efficacy of different genera and species commonly colonising buckwheat grains. Two widely accepted methods for evaluating fungal decontamination after CP treatment of seeds were compared: direct cultivation technique or contamination rate method (%) and indirect cultivation or colony-forming units (CFU) method. For most of the tested fungal taxa, an efficient decrease in contamination levels with increasing CP treatment time was observed. Fusarium graminearum was the most susceptible to CP treatment, while Fusarium fujikuroi seems to be the most resistant. The observed doses of oxygen atoms needed for 1-log reduction range from 1024-1025 m-2. Although there was some minor discrepancy between the results obtained from both tested methods (especially in the case of Fusarium spp.), the trends were similar. The results indicate that the main factors affecting decontamination efficiency are spore shape, size, and colouration.

7.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37047840

ABSTRACT

In this study, we applied an inductively coupled, radio frequency oxygen plasma to maize seeds and investigated its effects on seedling emergence, plant number at tasseling, and crop yield of maize in realistic field conditions. Maize seeds of seven different hybrids were treated over two harvest years. In addition to plasma-treated seeds, a control sample, fungicide-treated seeds, an eco-layer, and a plasma and eco-layer combination, were planted. Seedling emergence, plant number at tasseling (plants/m2), and yield (kg/ha), were recorded. In the first harvest year, results were negatively affected by the presence of an insect pest. In the second harvest year, plant number and yield results were more uniform. In both years, for two and three hybrids, respectively, the highest yield arose from plants from plasma-treated seeds, but the differences were only partially significant. Considering our results, plasma treatment of maize seeds appears to have a positive effect on the yield of the plant.


Subject(s)
Germination , Insect Control , Oxygen , Plasma Gases , Seeds , Zea mays , Germination/drug effects , Zea mays/drug effects , Zea mays/growth & development , Seeds/drug effects , Seeds/growth & development , Plasma Gases/pharmacology , Oxygen/pharmacology
8.
Materials (Basel) ; 16(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36902889

ABSTRACT

Relevant data on heterogeneous surface recombination of neutral oxygen atoms available in the scientific literature are reviewed and discussed for various materials. The coefficients are determined by placing the samples either in non-equilibrium oxygen plasma or its afterglow. The experimental methods used to determine the coefficients are examined and categorized into calorimetry, actinometry, NO titration, laser-induced fluorescence, and various other methods and their combinations. Some numerical models for recombination coefficient determination are also examined. Correlations are drawn between the experimental parameters and the reported coefficients. Different materials are examined and categorized according to reported recombination coefficients into catalytic, semi-catalytic, and inert materials. Measurements from the literature of the recombination coefficients for some materials are compiled and compared, along with the possible system pressure and material surface temperature dependence of the materials' recombination coefficient. A large scattering of results reported by different authors is discussed, and possible explanations are provided.

9.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499399

ABSTRACT

A method for the immobilization of an antibacterial chitosan coating to polymeric urinary medical catheters is presented. The method comprises a two-step plasma-treatment procedure, followed by the deposition of chitosan from the water solution. In the first plasma step, the urinary catheter is treated with vacuum-ultraviolet radiation to break bonds in the polymer surface film and create dangling bonds, which are occupied by hydrogen atoms. In the second plasma step, polymeric catheters are treated with atomic oxygen to form oxygen-containing surface functional groups acting as binding sites for chitosan. The presence of oxygen functional groups also causes a transformation of the hydrophobic polymer surface to hydrophilic, thus enabling uniform wetting and improved adsorption of the chitosan coating. The wettability was measured by the sessile-drop method, while the surface composition and structure were measured by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. Non-treated samples did not exhibit successful chitosan immobilization. The effect of plasma treatment on immobilization was explained by noncovalent interactions such as electrostatic interactions and hydrogen bonds.


Subject(s)
Chitosan , Chitosan/chemistry , Urinary Catheters , Ultraviolet Rays , Spectroscopy, Fourier Transform Infrared , Polymers , Oxygen
10.
Molecules ; 27(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558196

ABSTRACT

Plasma methods are often employed for the desired wettability and soaking properties of polymeric textiles, but the exact mechanisms involved in plasma-textile interactions are yet to be discovered. This review presents the fundamentals of plasma penetration into textiles and illustrates mechanisms that lead to the appropriate surface finish of fibers inside the textile. The crucial relations are provided, and the different concepts of low-pressure and atmospheric-pressure discharges useful for the modification of textile's properties are explained. The atmospheric-pressure plasma sustained in the form of numerous stochastical streamers will penetrate textiles of reasonable porosity, so the reactive species useful for the functionalization of fibers deep inside the textile will be created inside the textile. Low-pressure plasmas sustained at reasonable discharge power will not penetrate into the textile, so the depth of the modified textile is limited by the diffusion of reactive species. Since the charged particles neutralize on the textile surface, the neutral species will functionalize the fibers deep inside the textile when low-pressure plasma is chosen for the treatment of textiles.

11.
Plants (Basel) ; 11(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36235355

ABSTRACT

This paper investigates the effects of an inductively coupled, radio frequency oxygen plasma on the plant emergence and crop yield of wheat in field growth conditions. Wheat seeds of eight different cultivars were plasma-treated using conditions selected based on preliminary experiments. Additionally, a control sample, as well as seeds treated with fungicide, an eco-layer, or a plasma + eco-layer combination, were planted in parallel. Four cultivars per harvest year were used. Plant emergence (plants/m2) and yield (kg/ha) were followed. There was little variation among the control and the various treatments regarding plant emergence. Regarding yield, there were statistically significant differences, but no discernible trend was seen when comparing the individual treatments. In the case of several cultivars, plasma-treated seeds performed as well as the control, but there was a significant increase in yield only in the case of cultivar 88.5 R. In several cases, yield of plants for plasma-treated seeds was also lower than the control. Our results demonstrate that the response of wheat yield to plasma treatment, as well as to other seed treatments, differs depending on the wheat cultivar.

12.
Int J Mol Sci ; 23(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35806379

ABSTRACT

Cold plasma (CP) technology is a technique used to change chemical and morphological characteristics of the surface of various materials. It is a newly emerging technology in agriculture used for seed treatment with the potential of improving seed germination and yield of crops. Wheat seeds were treated with glow (direct) or afterglow (indirect) low-pressure radio-frequency oxygen plasma. Chemical characteristics of the seed surface were evaluated by XPS and FTIR analysis, changes in the morphology of the seed pericarp were analysed by SEM and AFM, and physiological characteristics of the seedlings were determined by germination tests, growth studies, and the evaluation of α-amylase activity. Changes in seed wettability were also studied, mainly in correlation with functionalization of the seed surface and oxidation of lipid molecules. Only prolonged direct CP treatment resulted in altered morphology of the seed pericarp and increased its roughness. The degree of functionalization is more evident in direct compared to indirect CP treatment. CP treatment slowed the germination of seedlings, decreased the activity of α-amylase in seeds after imbibition, and affected the root system of seedlings.


Subject(s)
Plasma Gases , Triticum , Germination , Plasma Gases/pharmacology , Seedlings , Seeds , Triticum/physiology , alpha-Amylases
13.
Plants (Basel) ; 11(12)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35736703

ABSTRACT

Seeds of wheat cultivar Bologna were treated with a low-pressure, inductively coupled, radio frequency oxygen plasma. E-mode and H-mode plasma at the real powers of 25 and 275 W, respectively, was used at treatment times of 0.1-300 s. Plasma affected seed surface chemistry, determined by XPS, and surface topography, visualized by SEM. The combined effects of functionalization and etching modified seed surface wettability. The water contact angle (WCA) exponentially decreased with treatment time and correlated with the product of discharge power and treatment time well. Super-hydrophilicity was seen at a few 1000 Ws, and the necessary condition was over 35 at.% of surface oxygen. Wettability also correlated well with O-atom dose, where super-hydrophilicity was seen at 1024-1025 m-2. A relatively high germination percentage was seen, up to 1000 Ws (O-atom dose 1023-1024 m-2), while seed viability remained unaffected only up to about 100 Ws. Extensively long treatments decreased germination percentage and viability.

14.
Plants (Basel) ; 11(10)2022 May 20.
Article in English | MEDLINE | ID: mdl-35631791

ABSTRACT

Buckwheat is an alternative crop known for its many beneficial effects on our health. Fungi are an important cause of plant diseases and food spoilage, often posing a threat to humans and animals. This study reports the effects of low-pressure cold plasma treatment on decontamination and germination of common (CB) and Tartary buckwheat (TB) grains. Both plasma glow and afterglow were applied. The glow treatment was more effective in decontamination: initial contamination was reduced to less than 30% in CB and 10% in TB. Fungal diversity was also affected as only a few genera persisted after the glow treatment; however, it also significantly reduced or even ceased the germination capacity of both buckwheat species. Detailed plasma characterisation by optical spectroscopy revealed extensive etching of outer layers as well as cotyledons. Afterglow treatment resulted in a lower reduction of initial fungal contamination (up to 30% in CB and up to 50% in TB) and had less impact on fungal diversity but did not drastically affect germination: 60-75% of grains still germinated even after few minutes of treatment. The vacuum conditions alone did not affect the fungal population or the germination despite an extensive release of water.

15.
Nanomaterials (Basel) ; 12(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35055262

ABSTRACT

Carbon nanowalls are promising materials for various electrochemical devices due to their chemical inertness, desirable electrical conductivity, and excellent surface-to-mass ratio. Standard techniques, often based on plasma-assisted deposition using gaseous precursors, enable the synthesis of top-quality carbon nanowalls, but require long deposition times which represents a serious obstacle for mass applications. Here, an alternative deposition technique is presented. The carbon nanowalls were synthesized on titanium substrates using various polymers as solid precursors. A solid precursor and the substrate were mounted into a low-pressure plasma reactor. Plasma was sustained by an inductively coupled radiofrequency discharge in the H-mode at the power of 500 W. Spontaneous growth of carbon nanomaterials was observed for a variety of polymer precursors. The best quality of carbon nanowalls was obtained using aliphatic polyolefins. The highest growth rate of a thin film of carbon nanowalls of about 200 nm/s was observed. The results were explained by different degradation mechanisms of polymers upon plasma treatment and the surface kinetics.

16.
Polymers (Basel) ; 13(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34883744

ABSTRACT

Modification and functionalization of polymer surface properties is desired in numerous applications, and a standard technique is a treatment with non-equilibrium gaseous plasma. Fluorinated polymers exhibit specific properties and are regarded as difficult to functionalize with polar functional groups. Plasma methods for functionalization of polyvinylidene fluoride (PVDF) are reviewed and different mechanisms involved in the surface modification are presented and explained by the interaction of various reactive species and far ultraviolet radiation. Most authors used argon plasma but reported various results. The discrepancy between the reported results is explained by peculiarities of the experimental systems and illustrated by three mechanisms. More versatile reaction mechanisms were reported by authors who used oxygen plasma for surface modification of PVDF, while plasma sustained in other gases was rarely used. The results reported by various authors are analyzed, and correlations are drawn where feasible. The processing parameters reported by different authors were the gas pressure and purity, the discharge configuration and power, while the surface finish was predominantly determined by X-ray photoelectron spectroscopy (XPS) and static water contact angle (WCA). A reasonably good correlation was found between the surface wettability as probed by WCA and the oxygen concentration as probed by XPS, but there is hardly any correlation between the discharge parameters and the wettability.

17.
Int J Mol Sci ; 22(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34948120

ABSTRACT

According to the World Health Organization, the contamination of crops with aflatoxins poses a significant economic burden, estimated to affect 25% of global food crops. In the event that the contaminated food is processed, aflatoxins enter the general food supply and can cause serious diseases. Aflatoxins are distributed unevenly in food or feedstock, making eradicating them both a scientific and a technological challenge. Cooking, freezing, or pressurizing have little effect on aflatoxins. While chemical methods degrade toxins on the surface of contaminated food, the destruction inside entails a slow process. Physical techniques, such as irradiation with ultraviolet photons, pulses of extensive white radiation, and gaseous plasma, are promising; yet, the exact mechanisms concerning how these techniques degrade aflatoxins require further study. Correlations between the efficiency of such degradation and the processing parameters used by various authors are presented in this review. The lack of appropriate guidance while interpreting the observed results is a huge scientific challenge.


Subject(s)
Aflatoxins/chemistry , Crops, Agricultural , Decontamination , Food Contamination/prevention & control , Plasma Gases/chemistry , Humans
18.
Polymers (Basel) ; 13(24)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34960856

ABSTRACT

The biocompatibility of body implants made from polytetrafluoroethylene (PTFE) is inadequate; therefore, the surface should be grafted with biocompatible molecules. Because PTFE is an inert polymer, the adhesion of the biocompatible film may not be appropriate. Therefore, the PFTE surface should be modified to enable better adhesion, preferably by functionalization with amino groups. A two-step process for functionalization of PTFE surface is described. The first step employs inductively coupled hydrogen plasma in the H-mode and the second ammonia plasma. The evolution of functional groups upon treatment with ammonia plasma in different modes is presented. The surface is saturated with nitrogen groups within a second if ammonia plasma is sustained in the H-mode at the pressure of 35 Pa and forward power of 200 W. The nitrogen-rich surface film persists for several seconds, while prolonged treatment causes etching. The etching is suppressed but not eliminated using pulsed ammonia plasma at 35 Pa and 200 W. Ammonia plasma in the E-mode at the same pressure, but forward power of 25 W, causes more gradual functionalization and etching was not observed even at prolonged treatments up to 100 s. Detailed investigation of the XPS spectra enabled revealing the surface kinetics for all three cases.

19.
Polymers (Basel) ; 13(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209876

ABSTRACT

Cellulose is a promising biomass material suitable for high volume applications. Its potential lies in sustainability, which is becoming one of the leading trends in industry. However, there are certain drawbacks of cellulose materials which limit their use, especially their high wettability and low barrier properties, which can be overcome by applying thin coatings. Plasma technologies present a high potential for deposition of thin environmentally friendly and recyclable coatings. In this paper, two different plasma reactors were used for coating two types of cellulose-based substrates with hexamethyldisiloxane (HMDSO). The changes in surface characteristics were measured by atomic force microscopy (AFM), scanning electron microscopy (SEM), surface free energy and contact angles measurements, X-ray photoelectron spectroscopy (XPS), and secondary ion mass spectrometry (SIMS). Successful oleofobization was observed for an industrial scale reactor where pure HMDSO was used in the absence of oxygen.

20.
Int J Mol Sci ; 22(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206400

ABSTRACT

Seeds of common bean (Phaseolus vulgaris L.), of the Etna variety, were treated with low-pressure oxygen plasma sustained by an inductively coupled radiofrequency discharge in the H-mode for a few seconds. The high-intensity treatment improved seed health in regard to fungal contamination. Additionally, it increased the wettability of the bean seeds by altering surface chemistry, as established by X-ray photoelectron spectroscopy, and increasing surface roughness, as seen with a scanning electron microscope. The water contact angle at the seed surface dropped to immeasurably low values after a second of plasma treatment. Hydrophobic recovery within a month returned those values to no more than half of the original water contact angle, even for beans treated for the shortest time (0.5 s). Increased wettability resulted in accelerated water uptake. The treatment increased the bean radicle length, which is useful for seedling establishment in the field. These findings confirm that even a brief plasma treatment is a useful technique for the disinfection and stimulation of radicle growth. The technique is scalable to large systems due to the short treatment times.


Subject(s)
Germination/drug effects , Phaseolus/drug effects , Phaseolus/growth & development , Plasma Gases/pharmacology , Seeds/drug effects , Seeds/growth & development , Photoelectron Spectroscopy , Plant Development/drug effects , Seeds/ultrastructure , Surface Properties , Water , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...