Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Cell Prolif ; : e13606, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454614

ABSTRACT

Glioblastoma (GBM), a WHO grade IV glioma, is a malignant primary brain tumour for which combination of surgery, chemotherapy and radiotherapy is the first-line approach despite adverse effects. Tumour microenvironment (TME) is characterized by an interplay of cells and soluble factors holding a critical role in neoplastic development. Significant pathophysiological changes have been found in GBM TME, such as glia activation and oxidative stress. Microglia play a crucial role in favouring GBM growth, representing target cells of immune escape mechanisms. Our study aims at analysing radiation-induced effects in modulating intercellular communication and identifying the basis of protective mechanisms in radiation-naïve GBM cells. Tumour cells were treated with conditioned media (CM) derived from 0, 2 or 15 Gy irradiated GBM cells or 0, 2 or 15 Gy irradiated human microglia. We demonstrated that irradiated microglia promote an increase of GBM cell lines proliferation through paracrine signalling. On the contrary, irradiated GBM-derived CM affect viability, triggering cell death mechanisms. In addition, we investigated whether these processes involve mitochondrial mass, fitness and oxidative phosphorylation and how GBM cells respond at these induced alterations. Our study suggests that off-target radiotherapy modulates microglia to support GBM proliferation and induce metabolic modifications.

2.
Mol Neurobiol ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37922065

ABSTRACT

Neuropathic pain is one of the most debilitating forms of chronic pain, resulting from an injury or disease of the somatosensory nervous system, which induces abnormal painful sensations including allodynia and hyperalgesia. Available treatments are limited by severe side-effects and reduced efficacy in the chronic phase of the disease. Sigma-1 receptor (σ1R) has been identified as a chaperone protein, which modulate opioid receptors activities and the functioning of several ion channels, exerting a role in pain transmission. As such, it represents a druggable target to treat neuropathic pain. This study aims at investigating the therapeutic potential of the novel compound (+)-2R/S-LP2, a σ1R antagonist, in reducing painful behaviour and modulating the neuroinflammatory environment. We showed that repeated administration of the compound significantly inhibited mechanical allodynia in neuropathic rats, increasing the withdrawal threshold as compared to CCI-vehicle rats. Moreover, we found that (+)-2R/S-LP2-mediated effects resolve the neuroinflammatory microenvironment by reducing central gliosis and pro-inflammatory cytokines expression levels. This effect was coupled with a significant reduction of connexin 43 (Cx43) expression levels and gap junctions/hemichannels mediated microglia-to-astrocyte communication. These results suggest that inhibition of σ1R significantly attenuates neuropathic pain chronicization, thus representing a viable effective strategy.

5.
Int J Mol Sci ; 24(4)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36835567

ABSTRACT

Gap junctions (GJs) formed by connexins (Cxs) play an important role in the intercellular communication within most body tissues. In this paper, we focus on GJs and Cxs present in skeletal tissues. Cx43 is the most expressed connexin, participating in the formation of both GJs for intercellular communication and hemichannels (HCs) for communication with the external environment. Through GJs in long dendritic-like cytoplasmic processes, osteocytes embedded in deep lacunae are able to form a functional syncytium not only with neighboring osteocytes but also with bone cells located at the bone surface, despite the surrounding mineralized matrix. The functional syncytium allows a coordinated cell activity through the wide propagation of calcium waves, nutrients and anabolic and/or catabolic factors. Acting as mechanosensors, osteocytes are able to transduce mechanical stimuli into biological signals that spread through the syncytium to orchestrate bone remodeling. The fundamental role of Cxs and GJs is confirmed by a plethora of investigations that have highlighted how up- and downregulation of Cxs and GJs critically influence skeletal development and cartilage functions. A better knowledge of GJ and Cx mechanisms in physiological and pathological conditions might help in developing therapeutic approaches aimed at the treatment of human skeletal system disorders.


Subject(s)
Connexins , Gap Junctions , Humans , Connexins/metabolism , Gap Junctions/metabolism , Bone and Bones/metabolism , Cell Communication , Osteocytes/metabolism
6.
Antioxidants (Basel) ; 12(2)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36829778

ABSTRACT

The central nervous system represents a complex environment in which glioblastoma adapts skillfully, unleashing a series of mechanisms suitable for its efficient development and diffusion. In particular, changes in gene expression and mutational events that fall within the domain of epigenetics interact complexly with metabolic reprogramming and stress responses enacted in the tumor microenvironment, which in turn fuel genomic instability by providing substrates for DNA modifications. The aim of this review is to analyze this complex interaction that consolidates several conditions that confer a state of immunosuppression and immunoevasion, making glioblastoma capable of escaping attack and elimination by immune cells and therefore invincible against current therapies. The progressive knowledge of the cellular mechanisms that underlie the resistance of the glioblastoma represents, in fact, the only weapon to unmask its weak points to be exploited to plan successful therapeutic strategies.

7.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555432

ABSTRACT

The stria vascularis (SV) contributes to cochlear homeostasis and consists of three layers, one of which contains the blood-labyrinthic barrier (BLB), with a large number of bovine cochlear pericytes (BCPs). Cisplatin is a chemotherapeutic drug that can damage the SV and cause hearing loss. In this study, cell viability, proliferation rate, cytotoxicity and reactive oxygen species production were evaluated. The protein content of phospho-extracellular signal-regulated kinases (ERK) 1/2, total ERK 1/2, phospho-cytosolic phospholipase A2 (cPLA2), total cPLA2 and cyclooxygenase 2 (COX-2) and the release of prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) from BCPs were analyzed. Finally, the protective effect of platelet-derived growth factor (PDGF-BB) on BCPs treated with cisplatin was investigated. Cisplatin reduced viability and proliferation, activated ERK 1/2, cPLA2 and COX-2 expression and increased PGE2 and VEGF release; these effects were reversed by Dexamethasone. The presence of PDGF-BB during the treatment with cisplatin significantly increased the proliferation rate. No studies on cell regeneration in ear tissue evaluated the effect of the PDGF/Dex combination. The aim of this study was to investigate the effects of cisplatin on cochlear pericytes and propose new otoprotective agents aimed at preventing the reduction of their vitality and thus maintaining the BLB structure.


Subject(s)
Pericytes , Stria Vascularis , Animals , Cattle , Stria Vascularis/metabolism , Cisplatin/toxicity , Cisplatin/metabolism , Vascular Endothelial Growth Factor A/metabolism , Becaplermin/metabolism , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Platelet-Derived Growth Factor/metabolism
8.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499544

ABSTRACT

Neurodegenerative disorders are characterized by the progressive loss of central and/or peripheral nervous system neurons. Within this context, neuroinflammation comes up as one of the main factors linked to neurodegeneration progression. In fact, neuroinflammation has been recognized as an outstanding factor for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). Interestingly, neuroinflammatory diseases are characterized by dramatic changes in the epigenetic profile, which might provide novel prognostic and therapeutic factors towards neuroinflammatory treatment. Deep changes in DNA and histone methylation, along with histone acetylation and altered non-coding RNA expression, have been reported at the onset of inflammatory diseases. The aim of this work is to review the current knowledge on this field.


Subject(s)
Histones , Neurodegenerative Diseases , Humans , Histones/metabolism , Neuroinflammatory Diseases , Epigenesis, Genetic , Epigenomics , Neurodegenerative Diseases/genetics
9.
Biomedicines ; 10(9)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36140348

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting motoneurons (MNs) with a fatal outcome. The typical degeneration of cortico-spinal, spinal, and bulbar MNs, observed in post-mortem biopsies, is associated with the activation of neuroimmune cells. GJA1, a member of the connexins (Cxs) gene family, encodes for connexin 43 (Cx43), a core gap junctions (GJs)- and hemichannels (HCs)-forming protein, involved in cell death, proliferation, and differentiation. Recently, Cx43 expression was found to play a role in ALS pathogenesis. Here, we used microarray and RNA-seq datasets from the NCBI of the spinal cord of control (NDC) and ALS patients, which were stratified according to the GJA1 gene expression. Genes that positively or negatively correlated to GJA1 expression were used to perform a genomic deconvolution analysis (GDA) using neuroimmune signatures. Expression analysis revealed a significantly higher GJA1 expression in the MNs of ALS patients as compared to NDC. Gene deconvolution analysis revealed that positively correlated genes were associated with microglia activation, whereas negatively correlated genes were associated with neuronal activation profiles. Moreover, gene ontology analysis, performed on genes characterizing either microglia or neuronal signature, indicated immune activation or neurogenesis as main biological processes. Finally, using a synthetic analysis of drugs able to revert the GJA1 transcriptomic signatures, we found a specific drug profile for ALS patients with high GJA1 expression levels, composed of amlodipine, sertraline, and prednisolone. In conclusion, our exploratory study suggests GJA1 as a new neuro-immunological gene correlated to microglial cellular profile in the spinal cord of ALS patients. Further studies are warranted to confirm these results and to evaluate the therapeutic potential of drugs able to revert typical GJA1/CX43 signature in ALS patients.

10.
Int J Mol Sci ; 23(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35682543

ABSTRACT

Chronic neuropathic pain emerges from either central or peripheral lesions inducing spontaneous or amplified responses to non-noxious stimuli. Despite different pharmacological approaches to treat such a chronic disease, neuropathic pain still represents an unmet clinical need, due to long-term therapeutic regimens and severe side effects that limit application of currently available drugs. A critical phenomenon involved in central sensitization is the exchange of signalling molecules and cytokines, between glia and neurons, driving the chronicization process. Herein, using a chronic constriction injury (CCI) model of neuropathic pain, we evaluated the efficacy of the mu (M-) and delta (D-) opioid receptor (-OR) targeting agent LP2 in modulating connexin-based heterocellular coupling and cytokine levels. We found that long-term efficacy of LP2 is consequent to MOR-DOR targeting resulting in the reduction of CCI-induced astrocyte-to-microglia heterocellular coupling mediated by connexin 43. We also found that single targeting of DOR reduces TNF and IL-6 levels in the chronic phase of the disease, but the peripheral and central discharge as the primary source of excitotoxic stimulation in the spinal cord requires a simultaneous MOR-DOR targeting to reduce CCI-induced neuropathic pain.


Subject(s)
Neuralgia , Receptors, Opioid, delta , Analgesics, Opioid/pharmacology , Connexin 43/therapeutic use , Humans , Hyperalgesia/drug therapy , Neuralgia/drug therapy , Receptors, Opioid , Receptors, Opioid, mu , Spinal Cord
11.
Biomedicines ; 10(4)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35453557

ABSTRACT

In 2021 the World Health Organization published the fifth and latest version of the Central Nervous System tumors classification, which incorporates and summarizes a long list of updates from the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy work. Among the adult-type diffuse gliomas, glioblastoma represents most primary brain tumors in the neuro-oncology practice of adults. Despite massive efforts in the field of neuro-oncology diagnostics to ensure a proper taxonomy, the identification of glioblastoma-tumor subtypes is not accompanied by personalized therapies, and no improvements in terms of overall survival have been achieved so far, confirming the existence of open and unresolved issues. The aim of this review is to illustrate and elucidate the state of art regarding the foremost biological and molecular mechanisms that guide the beginning and the progression of this cancer, showing the salient features of tumor hallmarks in glioblastoma. Pathophysiology processes are discussed on molecular and cellular levels, highlighting the critical overlaps that are involved into the creation of a complex tumor microenvironment. The description of glioblastoma hallmarks shows how tumoral processes can be linked together, finding their involvement within distinct areas that are engaged for cancer-malignancy establishment and maintenance. The evidence presented provides the promising view that glioblastoma represents interconnected hallmarks that may led to a better understanding of tumor pathophysiology, therefore driving the development of new therapeutic strategies and approaches.

12.
Front Immunol ; 13: 1098212, 2022.
Article in English | MEDLINE | ID: mdl-36601122

ABSTRACT

Accumulating evidence sustains glial cells as critical players during central nervous system (CNS) development, homeostasis and disease. Olfactory ensheathing cells (OECs), a type of specialized glia cells sharing properties with both Schwann cells and astrocytes, are of critical importance in physiological condition during olfactory system development, supporting its regenerative potential throughout the adult life. These characteristics prompted research in the field of cell-based therapy to test OEC grafts in damaged CNS. Neuroprotective mechanisms exerted by OEC grafts are not limited to axonal regeneration and cell differentiation. Indeed, OEC immunomodulatory properties and their phagocytic potential encourage OEC-based approaches for tissue regeneration in case of CNS injury. Herein we reviewed recent advances on the immune role of OECs, their ability to modulate CNS microenvironment via bystander effects and the potential of OECs as a cell-based strategy for tissue regeneration.


Subject(s)
Neuroglia , Neuroprotection , Neuroglia/physiology , Schwann Cells , Astrocytes , Cell- and Tissue-Based Therapy
13.
Molecules ; 26(17)2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34500824

ABSTRACT

Osteoarthritis (OA) is a complex disease, source of pain and disability that affects millions of people worldwide. OA etiology is complex, multifactorial and joint-specific, with genetic, biological and biomechanical components. Recently, several studies have suggested a potential adjuvant role for natural extracts on OA progression, in terms of moderating chondrocyte inflammation and following cartilage injury, thus resulting in an overall improvement of joint pain. In this study, we first analyzed the phenylethanoid glycosides profile and the total amount of polyphenols present in a leaf aqueous extract of Verbascum thapsus L. We then investigated the anti-inflammatory and anti-osteoarthritic bioactive potential of the extract in murine monocyte/macrophage-like cells (RAW 264.7) and in human chondrocyte cells (HC), by gene expression analysis of specifics inflammatory cytokines, pro-inflammatory enzymes and metalloproteases. Six phenylethanoid glycosides were identified and the total phenolic content was 124.0 ± 0.7 mg gallic acid equivalent (GAE)/g of extract. The biological investigation showed that the extract is able to significantly decrease most of the cellular inflammatory markers, compared to both control cells and cells treated with Harpagophytum procumbens (Burch.) DC. ex Meisn, used as a positive control. Verbascum thapsus leaf aqueous extract has the potential to moderate the inflammatory response, representing an innovative possible approach for the inflammatory joint disease treatment.


Subject(s)
Anti-Inflammatory Agents/chemistry , Phytochemicals/chemistry , Scrophulariaceae/chemistry , Anti-Inflammatory Agents/therapeutic use , Humans , Inflammation/drug therapy , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Phytochemicals/therapeutic use , Plant Extracts/chemistry , Plant Extracts/therapeutic use
14.
Biology (Basel) ; 10(8)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34439999

ABSTRACT

Glioblastoma (GBM) represents the most common primary brain tumor within the adult population. Current therapeutic options are still limited by high rate of recurrences and signalling axes that promote GBM aggressiveness. The contribution of gap junctions (GJs) to tumor growth and progression has been proven by experimental evidence. Concomitantly, tumor microenvironment has received increasing interest as a critical process in dysregulation and homeostatic escape, finding a close link between molecular mechanisms involved in connexin 43 (CX43)-based intercellular communication and tumorigenesis. Moreover, evidence has come to suggest a crucial role of sonic hedgehog (SHH) signalling pathway in GBM proliferation, cell fate and differentiation. Herein, we used two human GBM cell lines, modulating SHH signalling and CX43-based intercellular communication in in vitro models using proliferation and migration assays. Our evidence suggests that modulation of the SHH effector smoothened (SMO), by using a known agonist (i.e., purmorphamine) and a known antagonist (i.e., cyclopamine), affects the CX43 expression levels and therefore the related functions. Moreover, SMO activation also increased cell proliferation and migration. Importantly, inhibition of CX43 channels was able to prevent SMO-induced effects. SHH pathway and CX43 interplay acts inducing tumorigenic program and supporting cell migration, likely representing druggable targets to develop new therapeutic strategies for GBM.

15.
Nat Prod Res ; 35(4): 669-675, 2021 Feb.
Article in English | MEDLINE | ID: mdl-30938188

ABSTRACT

Rosmarinus officinalis L. (RO), an aromatic plant used as food condiment and in traditional medicine, exerts numerous beneficial properties including antioxidant, analgesic and neuroprotective effects. Onset and progression of homeostatic imbalances observed in the early phases of a number of neurodegenerative diseases, have been associated with a gap junction (GJ)-dependent increased membrane permeability and alterations of connexins (Cxs), including Cx43. Here, we evaluate spray-dried RO extract (SDROE)-mediated effects on cell viability, apoptosis and Cx43-based intercellular communication using human SH-SY5Y neuron-like and human A-172 glial-like cells in an in vitro model of oxygen glucose deprivation (OGD) injury. We found that SDROE exerts a protective action in OGD-injured cells, increasing cell viability and metabolic turnover and decreasing Cx43-based cell coupling. These data suggest that SDROE-mediated Cx43 reduction may be the molecular basis for its beneficial effects to be exploited for preventive treatment against the risk of some neurodegenerative disorders.


Subject(s)
Glucose/deficiency , Neurons/pathology , Neuroprotective Agents/pharmacology , Oxygen/metabolism , Plant Extracts/pharmacology , Rosmarinus/chemistry , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Connexin 43/metabolism , Humans , Neurons/drug effects , Neurons/metabolism
16.
Front Psychol ; 11: 537922, 2020.
Article in English | MEDLINE | ID: mdl-33192780

ABSTRACT

The present study was carried out among 20 healthy young male athletes to determine whether aerobic exercise performed at two different intensities is able to affect executive functions. For this purpose, we used the Stroop Color Word Test (SCWT) to evaluate the ability to inhibit cognitive interference and the Trail Making Test (TMT) to assess organized visual search, set shifting, and cognitive flexibility. Simple Reaction Time (RT), as a measure of perception and response execution, was also evaluated. The experimental protocol included the measure of blood lactate levels with the aim of assessing possible relations between lactate blood values and selected executive functions after a 30-min steady-state test performed at 60% and at 80% of VO2max. The results showed that a 30-min aerobic exercise is not associated with a worsening of executive functions as long as the blood lactate levels stay within the 4 mmol/l threshold.

17.
Inflamm Res ; 69(9): 841-850, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32533221

ABSTRACT

BACKGROUND: Neuropathic pain is caused by primary lesion or dysfunction of either peripheral or central nervous system. Due to its complex pathogenesis, often related to a number of comorbidities, such as cancer, neurodegenerative and neurovascular diseases, neuropathic pain still represents an unmet clinical need, lacking long-term effective treatment and complex case-by-case approach. AIM AND METHODS: We analyzed the recent literature on the role of selective voltage-sensitive sodium, calcium and potassium permeable channels and non-selective gap junctions (GJs) and hemichannels (HCs) in establishing and maintaining chronic neuropathic conditions. We finally focussed our review on the role of extracellular microenvironment modifications induced by resident glial cells and on the recent advances in cell-to-cell and cell-to-extracellular environment communication in chronic neuropathies. CONCLUSION: In this review, we provide an update on the current knowledge of neuropathy chronicization processes with a focus on both neuronal and glial ion channels, as well as on channel-mediated intercellular communication.


Subject(s)
Cell Communication/physiology , Ion Channels/physiology , Neuralgia/etiology , Animals , Chronic Disease , Connexin 43/physiology , Gap Junctions/physiology , Humans
18.
Int J Mol Sci ; 21(6)2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32244920

ABSTRACT

Hericium Erinaceus (HE) is a medicinal plant known to possess anticarcinogenic, antibiotic, and antioxidant activities. It has been shown to have a protective effect against ischemia-injury-induced neuronal cell death in rats. As an extending study, here we examined in pheochromocytoma 12 (PC12) cells, whether HE could exert a protective effect against oxidative stress and apoptosis induced by di(2-ethylhexyl)phthalate (DEHP), a plasticizer known to cause neurotoxicity. We demonstrated that pretreatment with HE significantly attenuated DEHP induced cell death. This protective effect may be attributed to its ability to reduce intracellular reactive oxygen species levels, preserving the activity of respiratory complexes and stabilizing the mitochondrial membrane potential. Additionally, HE pretreatment significantly modulated Nrf2 and Nrf2-dependent vitagenes expression, preventing the increase of pro-apoptotic and the decrease of anti-apoptotic markers. Collectively, our data provide evidence of new preventive nutritional strategy using HE against DEHP-induced apoptosis in PC12 cells.


Subject(s)
Apoptosis , Diethylhexyl Phthalate/toxicity , Hericium/chemistry , Mitochondria/pathology , Plant Extracts/pharmacology , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Electron Transport Chain Complex Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heme Oxygenase-1/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , PC12 Cells , Rats , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism , Thioredoxins/metabolism , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/metabolism
19.
Article in English | MEDLINE | ID: mdl-32024008

ABSTRACT

The present study examined the effects of an exhaustive exercise on executive functions by using the Stroop Color Word Test (SCWT), Trail Making Test (TMT), A and B, and simple Reaction Time (RT). Thirty adults agreed to participate; 15 participants had a mean age of 24.7 years ± 3.2 Standard Deviation (SD, Standard Deviation) (group YOUNG), while the remaining 15 had a mean age of 58.9 years ± 2.6 SD (group OLD). Each subject performed the cognitive tasks at rest and blood lactate was measured (pre); each subject executed the acute exhaustive exercise and, immediately after the conclusion, executed the cognitive tasks and blood lactate was again measured (end). Cognitive tests were repeated and blood lactate measured 15 min after its conclusion of the exhaustive exercise (post). We observed: (1) a significant positive correlation between blood lactate levels and RT levels; (2) a significant negative relationship between levels of blood lactate and the SCWT mean score; (3) no significant correlation between blood lactate levels and TMT scores (time and errors), both A and B; (4) variations in blood lactate levels, due to exhaustive exercise, and parallel deterioration in the execution of RT and SCWT are significantly more pronounced in the group YOUNG than in the group OLD. The present study supports the possibility that high levels of blood lactate induced by an exhaustive exercise could adversely affect the executive functions pertaining to the prefrontal cortex.


Subject(s)
Brain/metabolism , Cognition/physiology , Executive Function/physiology , Exercise/physiology , Adult , Energy Metabolism/physiology , Female , Humans , Lactic Acid/blood , Male , Mental Processes/physiology , Middle Aged , Physical Fitness/physiology , Prefrontal Cortex , Reaction Time/physiology
20.
Front Physiol ; 9: 1742, 2018.
Article in English | MEDLINE | ID: mdl-30555356

ABSTRACT

The expression of neuronal and glial connexins (Cxs) has been evaluated in adipose-derived mesenchymal stem cells (ASCs) whose neural differentiation was promoted by a conditioned medium (CM) obtained from cultures of olfactory ensheathing cells (OECs) or Schwann cells (SCs). By immunocytochemistry and flow cytometer analysis it was found that Cx43 was already considerably expressed in naïve ASCs and further increased after 24 h and 7 days from CM exposition. Cx32 and Cx36 were significantly improved in conditioned cultures compared to control ASCs, whereas a decreased expression was noticed in the absence of CM treatments. Cx47 was virtually absent in any conditions. Altogether, high basal levels and induced increases of Cx43 expression suggest a potential attitude of ASCs toward an astrocyte differentiation, whereas the lack of Cx47 would indicate a poor propensity of ASCs to become oligodendrocytes. CM-evoked Cx32 and Cx36 increases showed that a neuronal- or a SC-like differentiation can be promoted by using this strategy. Results further confirm that environmental cues can favor an ASC neural differentiation, either as neuronal or glial elements. Of note, the use of glial products present in CM rather than the addition of chemical agents to achieve such differentiation would resemble "more physiological" conditions of differentiation. As a conclusion, the overexpression of typical neural Cxs would indicate the potential capability of neural-like ASCs to interact with neighboring neural cells and microenvironment.

SELECTION OF CITATIONS
SEARCH DETAIL
...