Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
EMBO Mol Med ; 15(11): e17810, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37807875

ABSTRACT

One of the defining features of acute myeloid leukemia (AML) is an arrest of myeloid differentiation whose molecular determinants are still poorly defined. Pharmacological removal of the differentiation block contributes to the cure of acute promyelocytic leukemia (APL) in the absence of cytotoxic chemotherapy, but this approach has not yet been translated to non-APL AMLs. Here, by investigating the function of hypoxia-inducible transcription factors HIF1α and HIF2α, we found that both genes exert oncogenic functions in AML and that HIF2α is a novel regulator of the AML differentiation block. Mechanistically, we found that HIF2α promotes the expression of transcriptional repressors that have been implicated in suppressing AML myeloid differentiation programs. Importantly, we positioned HIF2α under direct transcriptional control by the prodifferentiation agent all-trans retinoic acid (ATRA) and demonstrated that HIF2α blockade cooperates with ATRA to trigger AML cell differentiation. In conclusion, we propose that HIF2α inhibition may open new therapeutic avenues for AML treatment by licensing blasts maturation and leukemia debulking.


Subject(s)
Leukemia, Myeloid, Acute , Leukemia, Promyelocytic, Acute , Humans , Transcription Factors/metabolism , Leukemia, Myeloid, Acute/drug therapy , Tretinoin/pharmacology , Tretinoin/metabolism , Tretinoin/therapeutic use , Gene Expression Regulation , Cell Differentiation , Leukemia, Promyelocytic, Acute/drug therapy
2.
Nucleic Acids Res ; 51(20): 11024-11039, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37823593

ABSTRACT

The promyelocytic leukemia (PML) protein organizes nuclear aggregates known as PML nuclear bodies (PML-NBs), where many transcription factors localize to be regulated. In addition, associations of PML and PML-NBs with chromatin are described in various cell types, further implicating PML in transcriptional regulation. However, a complete understanding of the functional consequences of PML association to DNA in cellular contexts where it promotes relevant phenotypes is still lacking. We examined PML chromatin association in triple-negative breast cancer (TNBC) cell lines, where it exerts important oncogenic functions. We find that PML associates discontinuously with large heterochromatic PML-associated domains (PADs) that contain discrete gene-rich euchromatic sub-domains locally depleted of PML. PML promotes heterochromatic organization in PADs and expression of pro-metastatic genes embedded in these sub-domains. Importantly, this occurs outside PML-NBs, suggesting that nucleoplasmic PML exerts a relevant gene regulatory function. We also find that PML plays indirect regulatory roles in TNBC cells by promoting the expression of pro-metastatic genes outside PADs. Our findings suggest that PML is an important transcriptional regulator of pro-oncogenic metagenes in TNBC cells, via transcriptional regulation and epigenetic organization of heterochromatin domains that embed regions of local transcriptional activity.


Subject(s)
Chromatin , Triple Negative Breast Neoplasms , Humans , Cell Nucleus/metabolism , Chromatin/genetics , Chromatin/metabolism , Epigenesis, Genetic , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Promyelocytic Leukemia Protein/genetics , Promyelocytic Leukemia Protein/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor
3.
Nucleic Acids Res ; 51(10): 5193-5209, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37070602

ABSTRACT

The long non-coding RNA EPR is expressed in epithelial tissues, binds to chromatin and controls distinct biological activities in mouse mammary gland cells. Because of its high expression in the intestine, in this study we have generated a colon-specific conditional targeted deletion (EPR cKO) to evaluate EPR in vivo functions in mice. EPR cKO mice display epithelium hyperproliferation, impaired mucus production and secretion, as well as inflammatory infiltration in the proximal portion of the large intestine. RNA sequencing analysis reveals a rearrangement of the colon crypt transcriptome with strong reduction of goblet cell-specific factors including those involved in the synthesis, assembly, transport and control of mucus proteins. Further, colon mucosa integrity and permeability are impaired in EPR cKO mice, and this results in higher susceptibility to dextran sodium sulfate (DSS)-induced colitis and tumor formation. Human EPR is down-regulated in human cancer cell lines as well as in human cancers, and overexpression of EPR in a colon cancer cell line results in enhanced expression of pro-apoptotic genes. Mechanistically, we show that EPR directly interacts with select genes involved in mucus metabolism whose expression is reduced in EPR cKO mice and that EPR deletion causes tridimensional chromatin organization changes.


Subject(s)
Cell Transformation, Neoplastic , Inflammation , Mucus , RNA, Long Noncoding , Animals , Humans , Mice , Cell Transformation, Neoplastic/immunology , Colon/metabolism , Disease Models, Animal , Inflammation/immunology , Intestinal Mucosa/metabolism , Mice, Inbred C57BL , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
4.
Diabetologia ; 66(4): 695-708, 2023 04.
Article in English | MEDLINE | ID: mdl-36692510

ABSTRACT

AIMS/HYPOTHESIS: Islet autoantibodies (AAbs) are detected in >90% of individuals with clinically suspected type 1 diabetes at disease onset. A single AAb, sometimes at low titre, is often detected in some individuals, making their diagnosis uncertain. Type 1 diabetes genetic risk scores (GRS) are a useful tool for discriminating polygenic autoimmune type 1 diabetes from other types of diabetes, particularly the monogenic forms, but testing is not routinely performed in the clinic. Here, we used a type 1 diabetes GRS to screen for monogenic diabetes in individuals with weak evidence of autoimmunity, i.e. with a single AAb at disease onset. METHODS: In a pilot study, we genetically screened 142 individuals with suspected type 1 diabetes, 42 of whom were AAb-negative, 27 of whom had a single AAb (single AAb-positive) and 73 of whom had multiple AAbs (multiple AAb-positive) at disease onset. Next-generation sequencing (NGS) was performed in 41 AAb-negative participants, 26 single AAb-positive participants and 60 multiple AAb-positive participants using an analysis pipeline of more than 200 diabetes-associated genes. RESULTS: The type 1 diabetes GRS was significantly lower in AAb-negative individuals than in those with a single and multiple AAbs. Pathogenetic class 4/5 variants in MODY or monogenic diabetes genes were identified in 15/41 (36.6%) AAb-negative individuals, while class 3 variants of unknown significance were identified in 17/41 (41.5%). Residual C-peptide levels at diagnosis were higher in individuals with mutations compared to those without pathogenetic variants. Class 3 variants of unknown significance were found in 11/26 (42.3%) single AAb-positive individuals, and pathogenetic class 4/5 variants were present in 2/26 (7.7%) single AAb-positive individuals. No pathogenetic class 4/5 variants were identified in multiple AAb-positive individuals, but class 3 variants of unknown significance were identified in 19/60 (31.7%) patients. Several patients across the three groups had more than one class 3 variant. CONCLUSIONS/INTERPRETATION: These findings provide insights into the genetic makeup of patients who show weak evidence of autoimmunity at disease onset. Absence of islet AAbs or the presence of a single AAb together with a low type 1 diabetes GRS may be indicative of a monogenic form of diabetes, and use of NGS may improve the accuracy of diagnosis.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Autoimmunity/genetics , Pilot Projects , Autoantibodies , Risk Factors
5.
Front Immunol ; 13: 952715, 2022.
Article in English | MEDLINE | ID: mdl-36090979

ABSTRACT

The immunological events leading to type 1 diabetes (T1D) are complex and heterogeneous, underscoring the necessity to study rare cases to improve our understanding. Here, we report the case of a 16-year-old patient who showed glycosuria during a regular checkup. Upon further evaluation, stage 2 T1D, autoimmune thrombocytopenic purpura (AITP), and common variable immunodeficiency (CVID) were diagnosed. The patient underwent low carb diet, losing > 8 kg, and was placed on Ig replacement therapy. Anti-CD20 monoclonal antibody (Rituximab, RTX) was administered 2 years after diagnosis to treat peripheral polyneuropathy, whereas an atypical mycobacteriosis manifested 4 years after diagnosis and was managed with prolonged antibiotic treatment. In the fifth year of monitoring, the patient progressed to insulin dependency despite ZnT8A autoantibody resolution and IA-2A and GADA autoantibody decline. The patient had low T1D genetic risk score (GRS = 0.22817) and absence of human leukocyte antigen (HLA) DR3/DR4-DQ8. Genetic analysis identified the monoallelic mutation H159Y in TNFRSF13C, a gene encoding B-cell activating factor receptor (BAFFR). Significant reduced blood B-cell numbers and BAFFR levels were observed in line with a dysregulation in BAFF-BAFFR signaling. The elevated frequency of PD-1+ dysfunctional Tfh cells composed predominantly by Th1 phenotype was observed at disease onset and during follow-up. This case report describes a patient progressing to T1D on a BAFFR-mediated immunodysregulatory background, suggesting a role of BAFF-BAFFR signaling in islet-specific tolerance and T1D progression.


Subject(s)
Diabetes Mellitus, Type 1 , Adolescent , Autoantibodies , B-Cell Activating Factor/genetics , Humans , Insulin/genetics , Mutation
6.
Nucleic Acids Res ; 50(13): 7608-7622, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35748870

ABSTRACT

EPR is a long non-coding RNA (lncRNA) that controls cell proliferation in mammary gland cells by regulating gene transcription. Here, we report on Mettl7a1 as a direct target of EPR. We show that EPR induces Mettl7a1 transcription by rewiring three-dimensional chromatin interactions at the Mettl7a1 locus. Our data indicate that METTL7A1 contributes to EPR-dependent inhibition of TGF-ß signaling. METTL7A1 is absent in tumorigenic murine mammary gland cells and its human ortholog (METTL7A) is downregulated in breast cancers. Importantly, re-expression of METTL7A1 in 4T1 tumorigenic cells attenuates their transformation potential, with the putative methyltransferase activity of METTL7A1 being dispensable for its biological functions. We found that METTL7A1 localizes in the cytoplasm whereby it interacts with factors implicated in the early steps of mRNA translation, associates with ribosomes, and affects the levels of target proteins without altering mRNA abundance. Overall, our data indicates that METTL7A1-a transcriptional target of EPR-modulates translation of select transcripts.


Subject(s)
Breast Neoplasms , Methyltransferases/metabolism , RNA, Long Noncoding , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Proliferation , Chromatin/genetics , Female , Humans , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ribosomes/metabolism
7.
Curr Oncol ; 29(4): 2792-2797, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35448201

ABSTRACT

Patients with chronic lymphocytic leukemia (CLL) relapsing on ibrutinib are often treated with the Bcl-2 inhibitor venetoclax. However, the transition from one agent to another poses some clinical challenges due to disease flares sometimes occurring right after ibrutinib interruption. Here, we describe three clinical vignettes highlighting two distinct patterns of ibrutinib-to-venetoclax transition. While patients following the favorable pattern transited to venetoclax without experiencing disease flare, the one patient who took the unfavorable path showed rapid disease rebound, with large-cell transformation occurring one week after ibrutinib interruption. A high burden of BTK and PLCG2 mutations was found only in patients with the favorable transition pattern, suggesting that removing BTK inhibition might be particularly harmful if CLL cells are progressing through mechanisms external to the BTK axis.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Adenine/analogs & derivatives , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Piperidines/therapeutic use , Sulfonamides
9.
Nucleic Acids Res ; 48(16): 9053-9066, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32756918

ABSTRACT

Long non-coding RNAs (lncRNAs) can affect multiple layers of gene expression to control crucial cellular functions. We have previously demonstrated that the lncRNA EPR, by controlling gene expression at different levels, affects cell proliferation and migration in cultured mammary gland cells and impairs breast tumor formation in an orthotopic transplant model in mice. Here, we used ChIRP-Seq to identify EPR binding sites on chromatin of NMuMG mammary gland cells overexpressing EPR and identified its trans binding sites in the genome. Then, with the purpose of relating EPR/chromatin interactions to the reshaping of the epitranscriptome landscape, we profiled histone activation marks at promoter/enhancer regions by ChIP-Seq. Finally, we integrated data derived from ChIRP-Seq, ChIP-Seq as well as RNA-Seq in a comprehensive analysis and we selected a group of bona fide direct transcriptional targets of EPR. Among them, we identified a subset of EPR targets whose expression is controlled by TGF-ß with one of them-Arrdc3-being able to modulate Epithelial to Mesenchymal Transition. This experimental framework allowed us to correlate lncRNA/chromatin interactions with the real outcome of gene expression and to start defining the gene network regulated by EPR as a component of the TGF-ß pathway.


Subject(s)
Arrestins/genetics , Breast Neoplasms/genetics , RNA, Long Noncoding/genetics , Transforming Growth Factor beta/genetics , Animals , Binding Sites/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Chromatin/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Mice , Transcriptome/genetics
10.
PLoS One ; 10(11): e0143627, 2015.
Article in English | MEDLINE | ID: mdl-26599758

ABSTRACT

Transcription factors regulate gene expression by binding regulatory DNA. Understanding the rules governing such binding is an essential step in describing the network of regulatory interactions, and its pathological alterations. We show that describing regulatory regions in terms of their profile of total binding affinities for transcription factors leads to increased predictive power compared to methods based on the identification of discrete binding sites. This applies both to the prediction of transcription factor binding as revealed by ChIP-seq experiments and to the prediction of gene expression through RNA-seq. Further significant improvements in predictive power are obtained when regulatory regions are defined based on chromatin states inferred from histone modification data.


Subject(s)
Regulatory Sequences, Nucleic Acid/physiology , Transcription Factors/metabolism , Algorithms , Binding Sites/genetics , Binding Sites/physiology , Chromatin Immunoprecipitation , High-Throughput Nucleotide Sequencing , Humans , Protein Binding/genetics , Protein Binding/physiology , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...