Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 20(20)2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31601050

ABSTRACT

Polyhydroxylated dendrimer was synthesized from poly(amidoamine) (PAMAM) dendrimer generation 3 by addition of glycidol (G3gl). G3gl megamer was further modified by binding PAMAM G0 dendrimers by activation of G3gl with p-nitrophenylchloroformate, followed by the addition of excess PAMAM G0 and purification using dialysis. The maximum G0 binding capacity of G3gl was 12 in the case when G0 was equipped with two covalently attached nimesulide equivalents. Nimesulide (N) was converted into N-(p-nitrophenyl) carbonate derivative and fully characterized using X-ray crystallography and spectral methods. Nimesulide was then attached to G0 via a urea bond to yield G02N. The mixed generation G3gl-G02N megamer was characterized using 1H NMR spectroscopy, and its molecular weight was estimated to be 22.4 kDa. The AFM image of G3gl-G02N deposited on mica demonstrated aggregation of nimesulide-covered megamer. The height of the deposited megamer was 8.5 nm. The megameric conjugate with nimesulide was tested in vitro on three human cell lines: squamous cell carcinoma (SCC-15) and glioblastoma (U-118 MG) overexpressing cyclooxygenase-2 (COX-2), and normal skin fibroblasts (BJ). The conjugate efficiently penetrated into all cells and was more cytotoxic against SCC-15 than against BJ. Moreover, the conjugate produced a strong and selective antiproliferative effect on both cancer cell lines (IC50 < 7.5 µM).


Subject(s)
Dendrimers/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Sulfonamides/administration & dosage , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Carcinoma, Squamous Cell , Cell Line, Tumor , Cell Survival/drug effects , Glioblastoma , Humans , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Weight , Sulfonamides/chemistry
2.
Bioorg Med Chem ; 25(2): 706-713, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27919613

ABSTRACT

In search for soluble derivatives of PAMAM dendrimers as potential carriers for hydrophobic drugs, the conjugates of PAMAM G3 with biotin, further converted into glycodendrimer with d-glucoheptono-1,4-lactone, were prepared. Polyamidoamine dendrimer (PAMAM) of third generation, G3 was functionalized with four biotin equivalents covalently attached to terminal amine nitrogens via amide bond G34B. The remaining 28 amine groups were blocked by glucoheptoamide substituents (gh) to give G34B28gh or with one fluorescein equivalent (attached by reaction of G34B with fluorescein isothiocyanate, FITC) via thiourea bond as FITC followed by exhaustive glucoheptoamidation to get G34B27gh1F. As a control the G3 substituted totally with 32 glucoheptoamide residues, G3gh and its fluorescein labeled analogue G331gh1F were synthesized. The glucoheptoamidation of PAMAM G0 dendrimer with glucoheptono-1,4-lactone was performed in order to fully characterize the 1H NMR spectra of glucoheptoamidated PAMAM dendrimers and to control the derivatization of G3 with glucoheptono-1,4-lactone. Another two derivatives of G3, namely G34B28gh1F' and G332ghF', with ester bonded fluorescein were also obtained. Biological properties of obtained dendrimer conjugates were estimated in vitro with human cell lines: normal fibroblast (BJ) and two cancer glioblastoma (U-118 MG) and squamous carcinoma (SCC-15), including cytotoxicity by reduction of XTT and neutral red (NR) assays. Cellular uptake of dendrimer conjugates was evaluated with confocal microscopy. Obtained results confirmed, that biotinylated bioconjugates have always lower cytotoxicity and 3-4 times higher cellular uptake than non-biotinylated dendrimer conjugates in all cell lines. Comparison of various cell lines revealed different dose-dependent cell responses and the lower cytotoxicity of examined dendrimer conjugates for normal fibroblasts and squamous carcinoma, as compared with much higher cytotoxic effects seen in glioblastoma cell line. Synthetized multi-functional conjugate (G34B27gh1F) is a promising candidate as biocompatible vehicle for hydrophobic molecules used in anticancer therapy.


Subject(s)
Amides/pharmacokinetics , Antineoplastic Agents/chemistry , Biotin/pharmacokinetics , Dendrimers/pharmacokinetics , Amides/chemistry , Biotin/chemistry , Cell Survival/drug effects , Cells, Cultured , Dendrimers/chemistry , Dose-Response Relationship, Drug , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Humans , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...