Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1146381, 2023.
Article in English | MEDLINE | ID: mdl-37065193

ABSTRACT

Immediately after entry into host cells, viruses are sensed by the innate immune system, leading to the activation of innate antiviral effector mechanisms including the type I interferon (IFN) response and natural killer (NK) cells. This innate immune response helps to shape an effective adaptive T cell immune response mediated by cytotoxic T cells and CD4+ T helper cells and is also critical for the maintenance of protective T cells during chronic infection. The human gammaherpesvirus Epstein-Barr virus (EBV) is a highly prevalent lymphotropic oncovirus that establishes chronic lifelong infections in the vast majority of the adult population. Although acute EBV infection is controlled in an immunocompetent host, chronic EBV infection can lead to severe complications in immunosuppressed patients. Given that EBV is strictly host-specific, its murine homolog murid herpesvirus 4 or MHV68 is a widely used model to obtain in vivo insights into the interaction between gammaherpesviruses and their host. Despite the fact that EBV and MHV68 have developed strategies to evade the innate and adaptive immune response, innate antiviral effector mechanisms still play a vital role in not only controlling the acute infection but also shaping an efficient long-lasting adaptive immune response. Here, we summarize the current knowledge about the innate immune response mediated by the type I IFN system and NK cells, and the adaptive T cell-mediated response during EBV and MHV68 infection. Investigating the fine-tuned interplay between the innate immune and T cell response will provide valuable insights which may be exploited to design better therapeutic strategies to vanquish chronic herpesviral infection.


Subject(s)
Epstein-Barr Virus Infections , Gammaherpesvirinae , Humans , Animals , Mice , Herpesvirus 4, Human , Persistent Infection , Gammaherpesvirinae/physiology , Immunity , Antiviral Restriction Factors
2.
Cell Mol Immunol ; 18(2): 398-414, 2021 02.
Article in English | MEDLINE | ID: mdl-33408345

ABSTRACT

Signaling via interleukin-2 receptor (IL-2R) is a requisite for regulatory T (Treg) cell identity and function. However, it is not completely understood to what degree IL-2R signaling is required for Treg cell homeostasis, lineage stability and function in both resting and inflammatory conditions. Here, we characterized a spontaneous mutant mouse strain endowed with a hypomorphic Tyr129His variant of CD25, the α-chain of IL-2R, which resulted in diminished receptor expression and reduced IL-2R signaling. Under noninflammatory conditions, Cd25Y129H mice harbored substantially lower numbers of peripheral Treg cells with stable Foxp3 expression that prevented the development of spontaneous autoimmune disease. In contrast, Cd25Y129H Treg cells failed to efficiently induce immune suppression and lost lineage commitment in a T-cell transfer colitis model, indicating that unimpaired IL-2R signaling is critical for Treg cell function in inflammatory environments. Moreover, single-cell RNA sequencing of Treg cells revealed that impaired IL-2R signaling profoundly affected the balance of central and effector Treg cell subsets. Thus, partial loss of IL-2R signaling differentially interferes with the maintenance, heterogeneity, and suppressive function of the Treg cell pool.


Subject(s)
Colitis/immunology , Forkhead Transcription Factors/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Mutation , T-Lymphocytes, Regulatory/immunology , Animals , Colitis/metabolism , Colitis/pathology , Female , Forkhead Transcription Factors/genetics , Homeostasis , Immunosuppression Therapy , Interleukin-2/metabolism , Interleukin-2 Receptor alpha Subunit/genetics , Male , Mice , Mice, Inbred C57BL , Signal Transduction
3.
Front Microbiol ; 11: 421, 2020.
Article in English | MEDLINE | ID: mdl-32231656

ABSTRACT

Human T cell leukemia virus type 1 (HTLV-1) is a human retrovirus that is associated with two main diseases: HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T cell leukemia/lymphoma (ATL). Chemokines are highly specialized groups of cytokines that play important roles in organizing, trafficking, homing, and in the migration of immune cells to the bone marrow, lymphoid organs and sites of infection and inflammation. Aberrant expression or function of chemokines, or their receptors, has been linked to the protection against or susceptibility to specific infectious diseases, as well as increased the risk of autoimmune diseases and malignancy. Chemokines and their receptors participate in pathogenesis of HTLV-1 associated diseases from inflammation in the central nervous system (CNS) which occurs in cases of HAM/TSP to T cell immortalization and tissue infiltration observed in ATL patients. Chemokines represent viable effective prognostic biomarkers for HTLV-1-associated diseases which provide the early identification of high-risk, treatment possibilities and high-yielding clinical trials. This review focuses on the emerging roles of these molecules in the outcome of HTLV-1-associated diseases.

SELECTION OF CITATIONS
SEARCH DETAIL