Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Biochem Cell Biol ; 171: 106582, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38649007

ABSTRACT

DNA methylation is one of the most important epigenetic mark involved in many physiologic cellular processes and pathologies. During mitosis, the transmission of DNA methylation patterns from a mother to the daughter cells is ensured through the action of the Ubiquitin-like, containing PHD and RING domains, 1/DNA methyltransferase 1 (UHRF1/DNMT1) tandem. UHRF1 is involved in the silencing of many tumor suppressor genes (TSGs) via mechanisms that remain largely to be deciphered. The present study investigated the role and the regulation of UHRF1 poly-ubiquitination induced by thymoquinone, a natural anti-cancer drug, known to enhance or re-activate the expression of TSGs. We found that the auto-ubiquitination of UHRF1, induced by TQ, is mediated by reactive oxygen species, and occurs following DNA damage. We demonstrated that the poly-ubiquitinated form of UHRF1 is K63-linked and can still silence the tumor suppressor gene p16INK4A/CDKN2A. We further showed that TQ-induced auto-ubiquitination is mediated via the activity of Tip60. Since this latter is known as a nuclear receptor co-factor, we investigated if the glucocorticoid receptor (GR) might be involved in the regulation of UHRF1 ubiquitination. Activation of the GR, with dexamethasone, did not influence auto-ubiquitination of UHRF1. However, we could observe that TQ induced a K48-linked poly-ubiquitination of GR, probably involved in the proteosomal degradation pathway. Mass-spectrometry analysis of FLAG-HA-tagged UHRF1 identified UHRF1 partners involved in DNA repair and showed that TQ increased their association with UHRF1, suggesting that poly-ubiquitination of UHRF1 is involved in the DNA repair process. We propose that poly-ubiquitination of UHRF1 serves as a scaffold to recruit the DNA repair machinery at DNA damage sites.


Subject(s)
Benzoquinones , CCAAT-Enhancer-Binding Proteins , DNA Repair , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Ubiquitination/drug effects , Benzoquinones/pharmacology , DNA Repair/drug effects , Antineoplastic Agents/pharmacology , DNA Damage/drug effects
2.
Cells ; 13(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38334665

ABSTRACT

HIRIP3 is a mammalian protein homologous to the yeast H2A.Z deposition chaperone Chz1. However, the structural basis underlying Chz's binding preference for H2A.Z over H2A, as well as the mechanism through which Chz1 modulates histone deposition or replacement, remains enigmatic. In this study, we aimed to characterize the function of HIRIP3 and to identify its interacting partners in HeLa cells. Our findings reveal that HIRIP3 is specifically associated in vivo with H2A-H2B dimers and CK2 kinase. While bacterially expressed HIRIP3 exhibited a similar binding affinity towards H2A and H2A.Z, the associated CK2 kinase showed a notable preference for H2A phosphorylation at serine 1. The recombinant HIRIP3 physically interacted with the H2A αC helix through an extended CHZ domain and played a crucial role in depositing the canonical core histones onto naked DNA. Our results demonstrate that mammalian HIRIP3 acts as an H2A histone chaperone, assisting in its selective phosphorylation by Ck2 kinase at serine 1 and facilitating its deposition onto chromatin.


Subject(s)
Histone Chaperones , Histones , Animals , Humans , HeLa Cells , Histone Chaperones/genetics , Histones/metabolism , Mammals/metabolism , Molecular Chaperones/metabolism , Saccharomyces cerevisiae/metabolism , Serine , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
3.
J Biomol Struct Dyn ; : 1-16, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38173181

ABSTRACT

Multiple myeloma (MM) is a disease that causes plasma cell growth in the bone marrow and immune globulin buildup in blood and urine. Despite recent advances in MM therapy, many still die due to its high mortality rate. A study using computational simulations analyzed 100 natural ingredients from the SANC database to determine if they inhibited the IgH domain, a known cause of multiple myeloma. Natural component Diospyrin inhibited the IgH enzyme with the best binding energy of -10.3 kcal/mol and three carbon-hydrogen bonds, followed by Parviflorone F complex with a binding energy of -10.1 kcal/mol and two conventional-hydrogen bonds. As a result, the Molecular Dynamic simulation was used to test the stability of the two complexes. During the simulation, the Diospyrin molecule dissociated from the protein at roughly 67.5 ns, whereas the Parviflorone F molecule stayed attached to the protein throughout. The latter was the subject of the investigation. The analysis of the production run data revealed that the Parviflorone F molecule exhibits a variety of conformations within the binding pocket while keeping a relatively constant distance from the protein's center of mass. The analysis of the production run data revealed that the Parviflorone F molecule exhibited a variety of conformations within the binding pocket while keeping a relatively constant distance from the protein's center of mass. The root mean square deviation (RMSD) plots for both the protein and complex showed a stable and steady average value of 4.4 Å for the first 82 nanoseconds of manufacture. As a result, the average value increased to 8.3 Å. Furthermore, the components of the binding free energy, as computed by MM-GBSA, revealed that the mean binding energy of the Parviflorone F molecule was -23.88 kcal/mol. Finally, after analyzing all of the examination data, Parviflorone F was identified as a powerful inhibitor of the IgH domain and hence of the MM disease, which requires further in-vivo conformation.Communicated by Ramaswamy H. Sarma.

4.
J Exp Clin Cancer Res ; 42(1): 301, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37957685

ABSTRACT

BACKGROUND: Inherited defects in the base-excision repair gene MBD4 predispose individuals to adenomatous polyposis and colorectal cancer, which is characterized by an accumulation of C > T transitions resulting from spontaneous deamination of 5'-methylcytosine. METHODS: Here, we have investigated the potential role of MBD4 in regulating DNA methylation levels using genome-wide transcriptome and methylome analyses. Additionally, we have elucidated its function through a series of in vitro experiments. RESULTS: Here we show that the protein MBD4 is required for DNA methylation maintenance and G/T mismatch repair. Transcriptome and methylome analyses reveal a genome-wide hypomethylation of promoters, gene bodies and repetitive elements in the absence of MBD4 in vivo. Methylation mark loss is accompanied by a broad transcriptional derepression phenotype affecting promoters and retroelements with low methylated CpG density. MBD4 in vivo forms a complex with the mismatch repair proteins (MMR), which exhibits high bi-functional glycosylase/AP-lyase endonuclease specific activity towards methylated DNA substrates containing a G/T mismatch. Experiments using recombinant proteins reveal that the association of MBD4 with the MMR protein MLH1 is required for this activity. CONCLUSIONS: Our data identify MBD4 as an enzyme specifically designed to repair deaminated 5-methylcytosines and underscores its critical role in safeguarding against methylation damage. Furthermore, it illustrates how MBD4 functions in normal and pathological conditions.


Subject(s)
DNA Repair , Retroelements , Humans , DNA Mismatch Repair , Recombinant Proteins/genetics , DNA Methylation , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism
5.
Oncol Lett ; 26(5): 477, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37809047

ABSTRACT

Breast cancer (BC) is one of the most widespread types of cancer affecting females, and therefore, early diagnosis is critical. BC is a complex heterogeneous disease affected by several key pathways. Among these, WNT proteins and their frizzled receptors (FZD) have been demonstrated to be crucial in regulating a number of cellular and molecular events in BC tumorigenesis. The role of the WNT receptor, FZD8, in BC has received minimal attention; for that reason, the present study examined the prognostic value of its protein expression pattern in a BC cohort. FZD8 cytoplasmic expression pattern analysis revealed that ~38% of the primary samples presented with a high expression profile, whereas ~63% of the samples had a low expression profile. Overall, ~46% of the malignant tissues in the lymph node-positive samples exhibited an increased FZD8 cytoplasmic expression, whereas 54% exhibited low expression levels. An increased expression of FZD8 was associated with several clinicopathological characteristics of the patients, including a low survival rate, tumor vascular invasion, tumor size and grade, and molecular subtypes. Affymetrix microarray triple-negative BC datasets were analyzed and compared with healthy breast tissues in order to predict the potential interfering microRNAs (miRNAs) in the WNT/FZD8 signaling pathway. A total of 29 miRNAs with the potential to interact with the WNT/FZD8 signaling pathway were identified, eight of which exhibited a significant prediction score. The target genes for each predicted miRNA were identified. On the whole, the findings of the present study suggest that FZD8 is a potential prognostic marker for BC, shedding some light onto the silencing mechanisms involved in the complex BC signaling.

6.
J Alzheimers Dis ; 96(2): 827-844, 2023.
Article in English | MEDLINE | ID: mdl-37899058

ABSTRACT

BACKGROUND: Tyrosine-protein kinase Fyn (Fyn) is a critical signaling molecule involved in various cellular processes, including neuronal development, synaptic plasticity, and disease pathogenesis. Dysregulation of Fyn kinase has been implicated in various complex diseases, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as different cancer types. Therefore, identifying small molecule inhibitors that can inhibit Fyn activity holds substantial significance in drug discovery. OBJECTIVE: The aim of this study was to identify potential small-molecule inhibitors among bioactive phytoconstituents against tyrosine-protein kinase Fyn. METHODS: Through a comprehensive approach involving molecular docking, drug likeliness filters, and molecular dynamics (MD) simulations, we performed a virtual screening of a natural compounds library. This methodology aimed to pinpoint compounds potentially interacting with Fyn kinase and inhibiting its activity. RESULTS: This study finds two potential natural compounds: Dehydromillettone and Tanshinone B. These compoundsdemonstrated substantial affinity and specific interactions towards the Fyn binding pocket. Their conformations exhibitedcompatibility and stability, indicating the formation of robust protein-ligand complexes. A significant array of non-covalentinteractions supported the structural integrity of these complexes. CONCLUSION: Dehydromillettone and Tanshinone B emerge as promising candidates, poised for further optimization as Fynkinase inhibitors with therapeutic applications. In a broader context, this study demonstrates the potential of computationaldrug discovery, underscoring its utility in identifying compounds with clinical significance. The identified inhibitors holdpromise in addressing a spectrum of cancer and neurodegenerative disorders. However, their efficacy and safety necessitatevalidation through subsequent experimental studies.


Subject(s)
Phytochemicals , Proto-Oncogene Proteins c-fyn , Humans , Alzheimer Disease , Molecular Docking Simulation , Neoplasms , Tyrosine , Proto-Oncogene Proteins c-fyn/antagonists & inhibitors , Phytochemicals/pharmacology
7.
Medicina (Kaunas) ; 59(5)2023 05 12.
Article in English | MEDLINE | ID: mdl-37241167

ABSTRACT

Background: Colchicine has been proposed as a cytokine storm-blocking agent for COVID-19 due to its efficacy as an anti-inflammatory drug. The findings of the studies were contentious on the role of colchicine in preventing deterioration in COVID-19 patients. We aimed to evaluate the efficacy of colchicine in COVID-19-hospitalized patients. Design: A retrospective observational cohort study was carried out at three major isolation hospitals in Alexandria (Egypt), covering multiple centers. In addition, a systematic review was conducted by searching six different databases for published studies on the utilization of colchicine in patients with COVID-19 until March 2023. The primary outcome measure was to determine whether colchicine could decrease the number of days that the patient needed supplemental oxygen. The secondary outcomes were to evaluate whether colchicine could reduce the number of hospitalization days and mortality rate in these patients. Results: Out of 515 hospitalized COVID-19 patients, 411 were included in the survival analysis. After adjusting for the patients' characteristics, patients not receiving colchicine had a shorter length of stay (median: 7.0 vs. 6.0 days) and fewer days of supplemental oxygen treatment (median: 6.0 vs. 5.0 days), p < 0.05, but there was no significant difference in mortality rate. In a subgroup analysis based on oxygen equipment at admission, patients admitted on nasal cannula/face masks who did not receive colchicine had a shorter duration on oxygen supply than those who did [Hazard Ratio (HR) = 0.76 (CI 0.59-0.97)]. Using cox-regression analysis, clarithromycin compared to azithromycin in colchicine-treated patients was associated with a higher risk of longer duration on oxygen supply [HR = 1.77 (CI 1.04-2.99)]. Furthermore, we summarized 36 published colchicine studies, including 114,878 COVID-19 patients. Conclusions: COVID-19-hospitalized patients who were given colchicine had poorer outcomes in terms of the duration of supplemental oxygen use and the length of their hospital stay. Therefore, based on these findings, the use of colchicine is not recommended for COVID-19-hospitalized adults.


Subject(s)
COVID-19 , Adult , Humans , Colchicine/therapeutic use , Retrospective Studies , SARS-CoV-2 , Oxygen Saturation , Oxygen/therapeutic use , Observational Studies as Topic
8.
Front Pharmacol ; 13: 1027890, 2022.
Article in English | MEDLINE | ID: mdl-36457709

ABSTRACT

Alterations to the EGFR (epidermal growth factor receptor) gene, which primarily occur in the axon 18-21 position, have been linked to a variety of cancers, including ovarian, breast, colon, and lung cancer. The use of TK inhibitors (gefitinib, erlotinib, lapatinib, and afatinib) and monoclonal antibodies (cetuximab, panitumumab, and matuzumab) in the treatment of advanced-stage cancer is very common. These drugs are becoming less effective in EGFR targeted cancer treatment and developing resistance to cancer cell eradication, which sometimes necessitates stopping treatment due to the side effects. One in silico study has been conducted to identify EGFR antagonists using other compounds, databases without providing the toxicity profile, comparative analyses, or morphological cell death pattern. The goal of our study was to identify potential lead compounds, and we identified seven compounds based on the docking score and four compounds that were chosen for our study, utilizing toxicity analysis. Molecular docking, virtual screening, dynamic simulation, and in-vitro screening indicated that these compounds' effects were superior to those of already marketed medication (gefitinib). The four compounds obtained, ZINC96937394, ZINC14611940, ZINC103239230, and ZINC96933670, demonstrated improved binding affinity (-9.9 kcal/mol, -9.6 kcal/mol, -9.5 kcal/mol, and -9.2 kcal/mol, respectively), interaction stability, and a lower toxicity profile. In silico toxicity analysis showed that our compounds have a lower toxicity profile and a higher LD50 value. At the same time, a selected compound, i.e., ZINC103239230, was revealed to attach to a particular active site and bind more tightly to the protein, as well as show better in-vitro results when compared to our selected gefitinib medication. MTT assay, gene expression analysis (BAX, BCL-2, and ß-catenin), apoptosis analysis, TEM, cell cycle assay, ELISA, and cell migration assays were conducted to perform the cell death analysis of lung cancer and breast cancer, compared to the marketed product. The MTT assay exhibited 80% cell death for 75 µM and 100µM; however, flow cytometry analysis with the IC50 value demonstrated that the selected compound induced higher apoptosis in MCF-7 (30.8%) than in A549.

9.
Molecules ; 27(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35889390

ABSTRACT

Aptamers, the nucleic acid analogs of antibodies, bind to their target molecules with remarkable specificity and sensitivity, making them promising diagnostic and therapeutic tools. The systematic evolution of ligands by exponential enrichment (SELEX) is time-consuming and expensive. However, regardless of those issues, it is the most used in vitro method for selecting aptamers. Therefore, recent studies have used computational approaches to reduce the time and cost associated with the synthesis and selection of aptamers. In an effort to present the potential of computational techniques in aptamer selection, a simple sequence-based method was used to design a 69-nucleotide long aptamer (mod_09) with a relatively stable structure (with a minimum free energy of -32.2 kcal/mol) and investigate its binding properties to the tyrosine kinase domain of the NT-3 growth factor receptor, for the first time, by employing computational modeling and docking tools.


Subject(s)
Aptamers, Nucleotide , Neoplasms , Aptamers, Nucleotide/chemistry , Humans , Neoplasms/diagnosis , Receptor Protein-Tyrosine Kinases/genetics , Receptors, Growth Factor , SELEX Aptamer Technique/methods
10.
Molecules ; 27(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35408583

ABSTRACT

The current study was conducted to examine the in vitro anticancer potential of Cordia dichotoma (bark, leaves, pulp and seed). The plant material was collected from UT of J&K and methodical bioassays were carried out on ten human cancer cell lines (Michigan Cancer Foundation-7 (MCF-7), M.D. Anderson-Metastatic Breast (MDA-MB-231), Neuroblastoma-2a (N2A), SH-SY5Y, U-251, HCT-116, SW-620, A-549, MIA PaCa-2, Panc-1) from five different origins (breast, CNS, colon, lung, pancreas) respectively. Methanolic extracts were produced and fractions were then obtained from the extracts and evaluated for cytotoxicity. Mechanistic assays, HPLC, and GCMS profiling were performed on the highest active fraction. The Sulforhodamine B (SRB) assay determined the in vitro cytotoxicity. The findings revealed that the bark portion had in vitro cytotoxicity against the A-549 human lung cancer cell line. To our knowledge, this is the first study to show that the plant's bark has anticancer properties and induced chromatin condensation, confirmed cell death via ROS generation, and significantly decreased colony formation in A-549 cell line from lung origin in a dose-dependent manner. Furthermore, HPLC and GCMS investigations indicated the presence of a number of bioactive molecules such as gallic acid (144,969.86) uV*sec, caffeic acid (104.26) uV*sec, ferulic acid (472.87) uV*sec, vanillic acid (13,775.39) uV*sec, palmitic acid (18.34%), cis vaccenic acid (28.81%), etc. and one of the compounds was reported for the first time from the bark. As a result of its promising efficacy, it may become an essential cancer chemopreventive or chemotherapeutic medication for patients with lung carcinoma.


Subject(s)
Cordia , Neoplasms , Cell Line , Cell Line, Tumor , Chromatography, High Pressure Liquid , Cordia/chemistry , Gas Chromatography-Mass Spectrometry , Humans , Neoplasms/drug therapy , Phytochemicals/pharmacology , Plant Extracts/chemistry
11.
Front Mol Biosci ; 9: 783735, 2022.
Article in English | MEDLINE | ID: mdl-35237656

ABSTRACT

Wnt signalling receptors, Frizzleds (FZDs), play a pivotal role in many cellular events during embryonic development and cancer. Female breast cancer (BC) is currently the worldwide leading incident cancer type that cause 1 in 6 cancer-related death. FZD receptors expression in cancer was shown to be associated with tumour development and patient outcomes including recurrence and survival. FZD6 received little attention for its role in BC and hence we analysed its expression pattern in a Saudi BC cohort to assess its prognostic potential and unravel the impacted signalling pathway. Paraffin blocks from approximately 405 randomly selected BC patients aged between 25 and 70 years old were processed for tissue microarray using an automated tissue arrayer and then subjected to FZD6 immunohistochemistry staining using the Ventana platform. Besides, Ingenuity Pathway Analysis (IPA) knowledgebase was used to decipher the upstream and downstream regulators of FZD6 in BC. TargetScan and miRabel target-prediction databases were used to identify the potential microRNA to regulate FZD6 expression in BC. Results showed that 60% of the BC samples had a low expression pattern while 40% showed a higher expression level. FZD6 expression analysis showed a significant correlation with tumour invasion (p < 0.05), and borderline significance with tumour grade (p = 0.07). FZD6 expression showed a highly significant association with the BC patients' survival outcomes. This was mainly due to the overall patients' cohort where tumours with FZD6 elevated expression showed higher recurrence rates (DFS, p < 0.0001, log-rank) and shorter survival times (DSS, p < 0.02, log-rank). Interestingly, the FZD6 prognostic value was more potent in younger BC patients as compared to those with late onset of the disease. TargetScan microRNA target-prediction analysis and validated by miRabel showed that FZD6 is a potential target for a considerable number of microRNAs expressed in BC. The current study demonstrates a potential prognostic role of FZD6 expression in young BC female patients and provides a better understanding of the involved molecular silencing machinery of the Wnt/FZD6 signalling. Our results should provide a better understanding of FZD6 role in BC by adding more knowledge that should help in BC prevention and theranostics.

12.
Molecules ; 26(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34885992

ABSTRACT

Conventional cancer treatments have shown several unfavourable adverse effects, as well as an increase in anticancer drug resistance, which worsens the impending cancer therapy. Thus, the emphasis is currently en route for natural products. There is currently great interest in the natural bioactive components from medicinal plants possessing anticancer characteristics. For example, clove (Syzygium aromaticum L.) (Family Myrtaceae) is a highly prized spice that has been historically utilized as a food preservative and for diverse medical uses. It is reckoned amongst the valued sources of phenolics. It is indigenous to Indonesia but currently is cultivated in various places of the world. Among diverse active components, eugenol, the principal active component of S. aromaticum, has optimistic properties comprising antioxidant, anti-inflammatory, and anticancer actions. Eugenol (4-allyl-2-methoxyphenol) is a musky oil that is mainly obtained from clove. It has long been utilized all over the world as a result of its broad properties like antioxidant, anticancer, anti-inflammatory, and antimicrobial activities. Eugenol continues to pique investigators' interest because of its multidirectional activities, which suggests it could be used in medications to treat different ailments. Anticancer effects of eugenol are accomplished by various mechanisms like inducing cell death, cell cycle arrest, inhibition of migration, metastasis, and angiogenesis on several cancer cell lines. Besides, eugenol might be utilized as an adjunct remedy for patients who are treated with conventional chemotherapy. This combination leads to a boosted effectiveness with decreased toxicity. The present review focuses on the anticancer properties of eugenol to treat several cancer types and their possible mechanisms.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Antineoplastic Agents/administration & dosage , Antioxidants/administration & dosage , Eugenol/administration & dosage , Neoplasms/drug therapy , Phytochemicals/administration & dosage , Phytotherapy/methods , Syzygium/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Antineoplastic Agents/chemistry , Antioxidants/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Clove Oil/chemistry , Eugenol/chemistry , Humans , Neoplasms/pathology , Oils, Volatile/chemistry , Phytochemicals/chemistry , Plants, Medicinal/chemistry , Treatment Outcome
13.
Int J Mol Sci ; 22(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34884678

ABSTRACT

Ovarian cancer (OC) is the deadliest among all gynecological cancers. Epidemiological studies showed that obesity might influence many cancers including OC. One of the key factors that may link obesity and OC is leptin (LEP), known as an adipokine with pleiotropic effects on body homeostasis. This study aims to investigate the expression pattern of LEP, assess the methylation profiles of LEP and their associations with clinicopathological features including survival outcomes of OC patients. The protein expression of LEP was evaluated in 208 samples using both tissue microarray and immunohistochemistry techniques. The methylation profiles of LEP were measured in 63 formalin-fixed, paraffin-embedded tumor tissues by quantitative polymerase chain reaction using a MethyLight assay. Our results showed a significant association of LEP protein overexpression with several clinicopathological variables, mainly tumor subtype, LVI, age of menarche, tumor size and stage (p < 0.04). Kaplan-Meier analysis (using low expression versus high expression as a discriminator) indicated that LEP protein overexpression is a powerful positive prognosticator of both OC recurrence (DFS) and disease-specific survival (DSS) in our OC cohort (log-rank p = 0.01 and p = 0.002, respectively). This implies that patients with high LEP expression profiles live longer with less recurrence rates. Methylation analysis results demonstrated a clear association between no/low LEP protein expression pattern (38%) and LEP promoter CpG island hypermethylation (43%). Results of this study suggest that LEP is a powerful prognosticator of OC recurrence and DSS. LEP expression in OC seems to be regulated by its promoter hypermethylation through gene partial/total silencing. Further multi-institutional studies using larger cohorts are required to demystify the intricate molecular functions of this leptin-driven effects in OC pathophysiology and to accurately assess its theranostic potential and validate its prognostic/predictive power in OC onset, progression towards more effective and personalized management of OC patients.


Subject(s)
Leptin/metabolism , Ovarian Neoplasms/metabolism , DNA Methylation , Female , Humans , Leptin/genetics , Middle Aged , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Ovary/pathology , Precision Medicine , Prognosis , Promoter Regions, Genetic , Saudi Arabia/epidemiology
14.
Molecules ; 26(4)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670520

ABSTRACT

Uncaria tomentosa is a medicinal plant native to Peru that has been traditionally used in the treatment of various inflammatory disorders. In this study, the effectiveness of U. tomentosa as an anti-cancer agent was assessed using the growth and survival of B16-BL6 mouse melanoma cells. B16-BL6 cell cultures treated with both ethanol and phosphate-buffered saline (PBS) extracts of U. tomentosa displayed up to 80% lower levels of growth and increased apoptosis compared to vehicle controls. Treatment with ethanolic extracts of Uncaria tomentosa were much more effective than treatment with aqueous extracts. U. tomentosa was also shown to inhibit B16-BL6 cell growth in C57/bl mice in vivo. Mice injected with both the ethanolic and aqueous extracts of U. tomentosa showed a 59 ± 13% decrease in B16-BL6 tumour weight and a 40 ± 9% decrease in tumour size. Histochemical analysis of the B16-BL6 tumours showed a strong reduction in the Ki-67 cell proliferation marker in U. tomentosa-treated mice and a small, but insignificant increase in terminal transferase dUTP nick labelling (TUNEL) staining. Furthermore, U. tomentosa extracts reduced angiogenic markers and reduced the infiltration of T cells into the tumours. Collectively, the results in this study concluded that U. tomentosa has potent anti-cancer activity that significantly inhibited cancer cells in vitro and in vivo.


Subject(s)
Apoptosis , Cat's Claw/chemistry , Melanoma, Experimental/pathology , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Chromatography, High Pressure Liquid , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Phosphorylation/drug effects , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Tumor Burden/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...