Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(4): 2477-2497, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36780426

ABSTRACT

Phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) are a new family of antimitotic prodrugs bioactivated in breast cancer cells expressing CYP1A1. In this study, we report that the 14C-labeled prototypical PAIB-SO [14C]CEU-818 and its antimitotic counterpart [14C]CEU-602 are distributed in whole mouse body and they show a short half-life in mice. To circumvent this limitation, we evaluated the effect of the homologation of the alkyl side chain of the imidazolidin-2-one moiety of PAIB-SOs. Our studies evidence that PAIB-SOs bearing an n-pentyl side chain exhibit antiproliferative activity in the nanomolar-to-low-micromolar range and a high selectivity toward CYP1A1-positive breast cancer cells. Moreover, the most potent n-pentyl PAIB-SOs were significantly more stable toward rodent liver microsomes. In addition, PAIB-SOs 10 and 14 show significant antitumor activity and low toxicity in chorioallantoic membrane (CAM) assay. Our study confirms that homologation is a suitable approach to improve the rodent hepatic stability of PAIB-SOs.


Subject(s)
Antimitotic Agents , Neoplasms , Prodrugs , Mice , Animals , Antimitotic Agents/chemistry , Prodrugs/chemistry , Cytochrome P-450 CYP1A1 , Rodentia , Microsomes, Liver , Benzenesulfonates/chemistry
2.
J Pharm Pharmacol ; 72(2): 249-258, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31729035

ABSTRACT

OBJECTIVES: In this study, the antiproliferative activity of 3 phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) was assessed in a time-dependent manner together with their hepatic stability and metabolism using human, mouse and rat liver microsomes. METHODS: CEU-818, -820 and -913 were selected as promising hit compounds. Their antiproliferative activity on human breast carcinoma MCF-7 cells was evaluated using escalating concentrations of drugs at 24, 36 and 48 h and the sulforhodamine B assay. Their hepatic stability was evaluated by HPLC-UV of extracts obtained from human, mouse and rat liver microsomes. KEY FINDINGS: The antiproliferative activity of PAIB-SOs is concentration and time-dependent and requires between 24 and 36 h of contact with MCF-7 cells to detect a significant antiproliferative activity. PAIB-SOs stability in microsomes usually decreases following this order: human ≈ (rat > mouse). The CEU-913 exhibits the longest half-life in rat and human liver microsomes while the CEU-820 exhibits the longest half-life in mouse liver microsomes. CONCLUSIONS: Our in vitro results suggest that PAIB-SOs should have a minimum contact time of 24 h with the tumour to trigger significant antitumoural activity. The activity of mouse liver microsomes towards PAIB-SOs is higher than rat microsomes and tends to be higher than human liver microsomes.


Subject(s)
Antineoplastic Agents/pharmacology , Benzenesulfonates/pharmacology , Breast Neoplasms/drug therapy , Microsomes, Liver/metabolism , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Benzenesulfonates/administration & dosage , Benzenesulfonates/chemistry , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cytochrome P-450 CYP1A1/metabolism , Female , Half-Life , Humans , MCF-7 Cells , Mice , Prodrugs , Rats , Rats, Sprague-Dawley , Species Specificity , Time Factors
3.
Bioorg Med Chem ; 26(18): 5045-5052, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30201525

ABSTRACT

The role and the importance of the sulfonate moiety in phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) were assessed using its bioisosteric sulfonamide equivalent leading to new cytochrome P450 1A1 (CYP1A1)-activated prodrugs designated as 4-(3-alkyl-2-oxoimidazolidin-1-yl)-N-phenylbenzenesulfonamides (PAIB-SAs). PAIB-SAs are active in the submicromolar to low micromolar range showing selectivity toward CYP1A1-expressing MCF7 cells as compared to cells devoid of CYP1A1 activity such as MDA-MB-231 and HaCaT cells. The most potent, PAIB-SA 13, bearing a trimethoxyphenyl group on ring B blocks the cell cycle progression in G2/M phase, disrupts the microtubule dynamics and is biotransformed by CYP1A1 into CEU-638, its potent antimicrotuble counterpart. Structure-activity relationships related to PAIB-SOs and PAIB-SAs evidenced that PAIB-SOs and PAIB-SAs are true bioisosteric equivalents fully and selectively activatable by CYP1A-expressing cells into potent antimitotics.


Subject(s)
Antimitotic Agents/pharmacology , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cytochrome P-450 CYP1A1/metabolism , Prodrugs/pharmacology , Antimitotic Agents/chemical synthesis , Antimitotic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Molecular Structure , Prodrugs/chemical synthesis , Prodrugs/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...