Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Chem Sci ; 15(21): 8045-8051, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38817554

ABSTRACT

Free phosphaborenes have a labile boron-phosphorus double bond and therefore require extensive steric shielding by bulky substituents to prevent isomerisation and oligomerisation. In the present work, the small free phosphaborene F2B-P[double bond, length as m-dash]BF was isolated by matrix-isolation techniques and was characterised by infrared spectroscopy in conjunction with quantum-chemical methods. In contrast to its sterically hindered relatives, this small phosphaborene exhibits an acute BPB angle of 83° at the CCSD(T) level. An alternative orbital structure for the B[double bond, length as m-dash]P double bond is found in the triradical B[double bond, length as m-dash]PF3, the direct adduct of laser-ablated atomic B and PF3. The single-bonded isomer F2B-PF and the dimer F3P-B[triple bond, length as m-dash]B-PF3 are also tentatively assigned.

2.
J Chem Phys ; 160(2)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38205854

ABSTRACT

The α-hydroxyethyl radical (CH3·CHOH, 2A) is a key intermediate in ethanol biochemistry, combustion, atmospheric chemistry, radiation chemistry, and astrochemistry. Experimental data on the vibrational spectrum of this radical are crucially important for reliable detection and understanding of the chemical dynamics of this species. This study represents the first detailed experimental report on the infrared absorption bands of the α-hydroxyethyl radical complemented by ab initio computations. The radical was generated in solid para-H2 and Xe matrices via the reactions of hydrogen atoms with matrix-isolated ethanol molecules and radiolysis of isolated ethanol molecules with x rays. The absorption bands with maxima at 3654.6, 3052.1, 1425.7, 1247.9, 1195.6 (1177.4), and 1048.4 cm-1, observed in para-H2 matrices appearing upon the H· atom reaction, were attributed to the OHstr, α-CHstr, CCstr, COstr + CCObend, COstr, and CCstr + CCObend vibrational modes of the CH3·CHOH radical, respectively. The absorption bands with the positions slightly red-shifted from those observed in para-H2 were detected in both the irradiated and post-irradiation annealed Xe matrices containing C2H5OH. The results of the experiments with the isotopically substituted ethanol molecules (CH3CD2OH and CD3CD2OH) and the quantum-chemical computations at the UCCSD(T)/L2a_3 level support the assignment. The photolysis with ultraviolet light (240-300 nm) results in the decay of the α-hydroxyethyl radical, yielding acetaldehyde and its isomer, vinyl alcohol. A comparison of the experimental and theoretical results suggests that the radical adopts the thermodynamically more stable anti-conformation in both matrices.

3.
Phys Chem Chem Phys ; 25(33): 21883-21896, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37566409

ABSTRACT

Ethanol (C2H5OH) is one of the most common alcohol molecules observed in various space media (molecular clouds, star formation regions, and, highly likely, interstellar ices), where it is exposed to light and ionizing radiation, leading to more complex organic molecules and eventually to the biologically important species. To better understand the radiation-induced evolution of ethanol molecules in icy media, we have examined the transformations of isolated C2H5OH and C2D5OH under the action of X-rays and vacuum ultraviolet (VUV) radiation in solid inert matrices (Ne, Ar, Kr, and Xe) at 4.4 K using Fourier transform infrared (FTIR) spectroscopy. The results obtained with X-ray irradiation demonstrate the formation of a variety of radiolysis products corresponding to dehydrogenation (CH3CHOH˙, CH3CHO, CH2CHOH, CH3CO˙, H2CCO-H2, H2CCO, HCCO˙, CCO) and C-C bond rupture (H2CO, HCO˙, CO, CH4, and CH3˙). The absorptions of the CH3CHOH˙ radical related to the CCO stretching (the bands at 1249.1, 1247.0, 1246.2, and 1245.1 cm-1, in Ne, Ar, Kr, and Xe, respectively) were first tentatively characterized on the basis of comparison with available computational data. In addition, the C2H2⋯H2O complex, which corresponds to dehydrogenation, was found followed by C-O bond cleavage. The results were confirmed by experiments with isotopic substitution. It was found that dehydrogenation strongly predominated in a xenon matrix, while skeleton bond rupture is more feasible in neon and argon. The matrix effect was attributed to a significant role of "hot" reaction channels in neon and argon, which are efficiently quenched due to relaxation in more polarizable xenon. The VUV photolysis (185 nm) in Ar and Xe matrices yields a similar set of products, except for CH3CHOH˙ and CH2CHOH, which were not found (the nonobservation of the former species may be explained by its efficient secondary photolysis). The plausible mechanisms of product formation and astrochemical implications of the results are discussed.

4.
Phys Chem Chem Phys ; 25(6): 4624-4634, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36723210

ABSTRACT

This paper addresses the basic question of the impact of a chemically inert environment on the radiation-induced transformations of isolated organic molecules in icy media at cryogenic temperatures with possible implications for astrochemical issues. The radicals produced by X-ray irradiation of isolated ethanol molecules (C2H5OH and CH3CD2OH) in solid argon and xenon matrices at 7 K were characterized by electron paramagnetic resonance (EPR) spectroscopy. It was shown that methyl (CH3˙) and formyl (HCO˙) radicals resulting from the C-C bond cleavage were mainly produced in the case of solid argon, which was attributed to the significant role of "hot" ionic fragmentation and inefficient energy dissipation to medium. In contrast, irradiation in xenon results in the predominant formation of α-hydroxyethyl radicals (CH3˙CHOH or CH3˙CDOH(D) in the cases of C2H5OH and CH3CD2OH, respectively). Remarkably, the experiments with selectively deuterated ethanol provide strong indirect evidence for the primary formation of ethoxy (CH3CD2O˙) radicals due to O-H bond cleavage, which convert to the α-hydroxyethyl radicals due to isomerization occurring at 7 K. The α-hydroxyethyl radicals adopt a specific rigid conformation with a non-rotating methyl group at low temperatures, which is an unusual effect for neutral CH3˙CHX species, and exhibit free rotation in solid xenon only at ca. 65 K.

5.
J Chem Phys ; 157(17): 174306, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36347685

ABSTRACT

Acetylene and ammonia are important constituents of the interstellar medium, and their coupled chemistry induced by high-energy radiation may be responsible for the formation of a variety of prebiotically important organic-nitrogen compounds. In this work, we first comprehensively characterized the vibrational spectrum of the 1:1 C2H2⋯NH3 complex obtained by deposition of the C2H2/NH3/Ng (Ng = Ar, Kr, or Xe) gaseous mixtures at 5 K using Fourier transform infrared spectroscopy and ab initio calculations at the CCSD(T)/L2a_3 level of theory and examined its radiation-induced transformations. The parent complex adopts a C3v symmetric top molecular structure with C2H2 acting as a proton donor. The x-ray-induced transformations of this complex result in the formation of the C2H2⋯NH2 ∙ complex and various CN-containing species (CH2CNH, CH3NC, CH2NCH, CH2NC∙, CCN∙, and CNC∙). The radical-molecule complex was identified based on comparison of experimental data with the results of the UCCSD(T)/L2a_3 computations. It is characterized by distinct features in the region of acetylene CHasym str mode, red-shifted from the corresponding absorptions of non-complexed acetylene by -72.9, -70.4, and -60.6 cm-1 for Ar, Kr, and Xe, respectively. Additionally, in krypton and xenon matrices, the blue-shifted features in the CHasym bend region of acetylene were observed, which can be also tentatively attributed to the C2H2⋯NH2 ∙ complex. The extrapolated to the complete basis set limit unrestricted coupled cluster method with single and double, and perturbative triple excitations binding energy of the C2H2⋯NH2 ∙ complex (including zero-point vibration energy correction) is lower than that of the C2H2⋯NH3 complex (1.90 and 2.51 kcal mol-1, respectively). We believe that the C2H2⋯NH2 ∙ complex may be an important intermediate in cold synthetic astrochemistry.

6.
J Am Chem Soc ; 144(18): 8115-8128, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35487219

ABSTRACT

The family of isomeric H2C3O+• radical cations is of great interest for physical organic chemistry and chemistry occurring in extraterrestrial media. In this work, we have experimentally examined a unique synthetic route to the generation of H2C3O+• from the C2H2···CO intermolecular complex and also considered the relative stability and monomolecular transformations of the H2C3O+• isomers through high-level ab initio calculations. The structures, energetics, harmonic frequencies, hyperfine coupling constants, and isomerization pathways for several of the most important H2C3O+• isomers were calculated at the UCCSD(T) level of theory. The complementary FTIR and EPR studies in argon matrices at 5 K have demonstrated that the ionized C2H2···CO complex transforms into the E-HCCHCO+• isomer, and this latter species is supposed to be the key intermediate in further chemical transformations, providing a remarkable piece of evidence for kinetic control in low-temperature chemistry. Photolysis of this species at λ = 410-465 nm results in its transformation to the thermodynamically most stable H2CCCO+• isomer. Possible implications of the results and potentiality of the proposed synthetic strategy to the preparation of highly reactive organic radical cations are discussed.


Subject(s)
Argon , Argon/chemistry , Cations/chemistry , Isomerism , Kinetics , Photolysis
7.
Phys Chem Chem Phys ; 24(1): 419-432, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34897322

ABSTRACT

Acetaldehyde is one of the key small organic molecules involved in astrochemical and atmospheric processes occurring under the action of ionizing and UV radiation. While the UV photochemistry of acetaldehyde is well studied, little is known about the mechanism of processes induced by high-energy radiation. This paper reports the first systematic study on the chemical transformations of CH3CHO molecules resulting from X-ray irradiation under the conditions of matrix isolation in different solid noble gases (Ne, Ar, Kr, and Xe) at 5 K. CO, CH4, H2CCO, H2CCO-H2, C2H2⋯H2O, CH2CHOH, CH3CO˙, CH3˙, HCCO˙, and CCO were identified as the main radiolysis products. The dominant pathway of acetaldehyde degradation involves C-C bond cleavage leading to the formation of carbon monoxide and methane. The second important channel is dehydrogenation resulting in the formation of ketene, a potentially highly reactive species. It was found that the matrix significantly affected both the decomposition efficiency and distribution of the reaction channels. Based on these observations, it was suggested that the formation of the methyl radical as well as vinyl alcohol and the C2H2⋯H2O complex presumably included a significant contribution of ionic pathways. The decomposition of acetyl radicals under photolysis with visible light leading to the CH3˙-CO radical-molecule pair was observed in all matrices, while the recovery of CH3CO˙ in the dark at 5 K was found only in Xe. This finding represents a prominent example of matrix-dependent chemical dynamics (probably, involving tunnelling), which deserves further theoretical studies. Probable mechanisms of acetaldehyde radiolysis and their implications for astrochemistry, atmospheric chemistry and low-temperature chemistry are discussed.

8.
Phys Chem Chem Phys ; 23(34): 18449-18460, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34612385

ABSTRACT

Nitriles are important constituents of extraterrestrial media. Nitriles are supposed to play a crucial role in prebiotic chemistry occurring in the interstellar medium. In this work, we have investigated the low-temperature radiation-induced transformations of a 1 : 1 CH4HCN complex as a plausible precursor of the simplest nitriles using the matrix isolation approach with FTIR spectroscopic detection. The parent complexes isolated in a noble gas (Ng) matrix were obtained by deposition of the CH4/HCN/Ng gaseous mixture and characterized by comparison of experimental complexation-induced shifts of the HCN fundamentals with the results of the ab initio calculations. It was found that the X-ray irradiation of low-temperature matrices containing the isolated 1 : 1 CH4HCN complex resulted in the formation of acetonitrile (CH3CN) and isoacetonitrile (CH3NC) and it appears to be the first experimental evidence for the formation of C2 nitriles (acetonitrile and isoacetonitrile) from such a "building block". Additionally, a 1 : 1 CH4HNC complex was tentatively assigned to the irradiated Ar and Kr matrices. It is demonstrated that the matrix has a strong effect on the CH3CN/CH3NC yield ratio, which dramatically increases in the row Ar < Kr < Xe. Also, the efficiency of the radiation-induced formation of the CH4HNC complex was shown to decrease from Ar to Kr. It is believed that the proposed pathway for acetonitrile formation may be a significant step in the radiation-induced evolution leading to complex organic molecules and biomolecules under astrochemical conditions. Furthermore, the obtained results provide a prominent example of the impact of very weak intermolecular interactions on the radiation-induced transformations in cold media.

SELECTION OF CITATIONS
SEARCH DETAIL