Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PeerJ ; 7: e6394, 2019.
Article in English | MEDLINE | ID: mdl-30740278

ABSTRACT

Bird migration is a widely studied phenomenon, however many factors that influence migratory flows remain unknown or poorly understood. Food availability en route is particularly important for many species and can affect their migration success, pattern and timing but this relationship has not been addressed at a wide scale due to the lack of spatial models of food availability on the terrain. This work presents a GIS-database approach that combines spatial and non-spatial ecological information in order to map fruit availability from vegetation over time in the SE Alps, an important node of European migratory routes. We created a unique database that contains information on the presence and periods of fructification of 52 wild plants carrying berries and a series of original cartographic themes. The presence and coverage of the plant species was modelled with the geo-statistical method of the Gaussian Kernel, which was validated against the ground truth of field sampling data with a correct classification power above 80% in most cases. The highest fruit availability in the study area during September and October co-occurs with the peak of captures of berry eating birds. The maps created and distributed along this work can be useful to address more detailed studies about stopover sites as well as the spatial ecology of other fruit eating animals.

2.
Sci Total Environ ; 579: 27-36, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27876390

ABSTRACT

In recent decades, a dramatic landscape change has occurred in the European alpine region: open areas have been naturally recolonized by forests as traditional agricultural and forest activities were reduced and reorganized. Land use changes (LUC) are generally measured through GIS and photo interpretation techniques, but despite many studies focused on this phenomenon and its effects on biodiversity and on the environment in general, there is a lack of information about the transformation of the human-environment connection. The study of Traditional Ecological Knowledge (TEK), such as the ability to recognize wild plants used as medicine or food, can suggest how this connection evolved through time and generations. This work investigates the relationship between the natural forest cover expansion that influences the loss of open areas and the loss of TEK. Different data sources and approaches were used to address the topic in all its complexity: a mix of questionnaire investigations, historical maps, GIS techniques and modelling were used to analyse past land use changes and predict future scenarios. The study area, Trentino, Italy, is paradigmatic of the alpine situation, and the land use change in the region is well documented by different studies, which were reviewed and compared in this paper. Our findings suggest that open area loss can be used as a good proxy to highlight the present state and to produce future scenarios of Traditional Ecological Knowledge. This could increase awareness of the loss of TEK in other Alpine regions, where data on TEK are lacking, but where environmental trends are comparable.


Subject(s)
Ecology , Environmental Monitoring/methods , Agriculture , Biodiversity , Conservation of Natural Resources , Ecosystem , Forecasting , Forests , Italy , Plants
SELECTION OF CITATIONS
SEARCH DETAIL