Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mutat ; 43(3): 316-327, 2022 03.
Article in English | MEDLINE | ID: mdl-34882875

ABSTRACT

Hereditary papillary renal cell carcinoma (HPRC) is a rare inherited renal cancer syndrome characterized by bilateral and multifocal papillary type 1 renal tumors (PRCC1). Activating germline pathogenic variants of the MET gene were identified in HPRC families. We reviewed the medical and molecular records of a large French series of 158 patients screened for MET oncogenic variants. MET pathogenic and likely pathogenic variants rate was 12.4% with 40.6% among patients with familial PRCC1 and 5% among patients with sporadic PRCC1. The phenotype in cases with MET pathogenic and likely pathogenic variants was characteristic: PRCC1 tumors were mainly bilateral (84.3%) and multifocal (87.5%). Histologically, six out of seven patients with MET pathogenic variant harbored biphasic squamoid alveolar PRCC. Genetic screening identified one novel pathogenic variant MET c.3389T>C, p.(Leu1130Ser) and three novel likely pathogenic variants: MET c.3257A>T, p.(His1086Leu); MET c.3305T>C, p.(Ile1102Thr) and MET c.3373T>G, p.(Cys1125Gly). Functional assay confirmed their oncogenic effect as they induced an abnormal focus formation. The genotype-phenotype correlation between MET pathogenic variants and PRCC1 presentation should encourage to widen the screening, especially toward nonfamilial PRCC1. This precise phenotype also constitutes a strong argument for the classification of novel missense variants within the tyrosine kinase domain when functional assays are not accessible.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Neoplastic Syndromes, Hereditary , Proto-Oncogene Proteins c-met , Carcinoma, Renal Cell/genetics , Female , Germ Cells/metabolism , Humans , Kidney Neoplasms/genetics , Male , Phenotype , Proto-Oncogene Proteins c-met/genetics
2.
Biochim Biophys Acta ; 1621(1): 92-101, 2003 Apr 07.
Article in English | MEDLINE | ID: mdl-12667615

ABSTRACT

It has been previously shown that glucose transporter Glut-1 expression was detectable by immunostaining in tissue sections from anaplastic carcinoma, but not in normal thyroid tissue. Using human thyroid anaplastic carcinoma cells, we studied the mechanism by which Glut-1 molecules are translocated from the endoplasmic reticulum to the cell surface. The contribution of N- and O-linked glycans for the translocation and activity of Glut-1 transporter is emphasized. The inhibition of N-glycosylation with tunicamycin (TM) led to a 50% decrease in glucose transport while glycosylated and unglycosylated forms of Glut-1 were found at the cell surface. However, the inhibition of N-linked oligosaccharide processing with deoxymannojirimycin (dMJ) and swainsonine (SW) influenced neither the intracellular trafficking nor the activity of the transporter. On the other hand, Glut-1 bound to the O-linked glycan-specific lectin jacalin and the O-glycosylation inhibitor benzyl-N-acetylgalactosamine dramatically inhibited glucose transport. These results show that O- and N-linked oligosaccharides arbored by Glut-1 are essential for glucose transport in anaplastic carcinoma cells. The quantitative and qualitative alterations of Glut-1 glycosylation and the increase in glucose transport are associated with the anaplastic phenotype of human thyroid cells.


Subject(s)
Glycosylation , Monosaccharide Transport Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Binding Sites , Biotinylation , Blotting, Western , Glucose/metabolism , Glucose Transporter Type 1 , Glycoside Hydrolases , Humans , Karyotyping , Mannosidases/antagonists & inhibitors , Membrane Proteins/isolation & purification , Membrane Proteins/metabolism , Monosaccharide Transport Proteins/biosynthesis , Monosaccharide Transport Proteins/chemistry , Nitrogen/chemistry , Oxygen/chemistry , Thyroid Neoplasms , Tumor Cells, Cultured , Tunicamycin/pharmacology
3.
Cancer Genet Cytogenet ; 135(2): 187-91, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12127405

ABSTRACT

Fluorescence in situ hybridization (FISH) analysis in a case of infant acute monocytic leukemia M5 revealed a complex rearrangement between chromosomes 10 and 11, leading to the disruption of the MLL gene. Using two painting probes for chromosomes 10 and 11 and a specific probe for the MLL gene localized on 11q23, we observed a paracentric inversion of the 11q13-q23 fragment translocated to 10p12. Molecular analysis showed that AF10 localized on 10p12 was the fusion partner gene of MLL in this rearrangement (10;11). This report underlined the usefulness of FISH and molecular techniques in identifying complex rearrangements.


Subject(s)
Chromosome Inversion , Chromosomes, Human, Pair 10/ultrastructure , Chromosomes, Human, Pair 11/ultrastructure , DNA-Binding Proteins/genetics , Leukemia, Monocytic, Acute/genetics , Oncogene Proteins, Fusion/genetics , Proto-Oncogenes , Transcription Factors/genetics , Translocation, Genetic , Bone Marrow Transplantation , Chromosomes, Human, Pair 10/genetics , Chromosomes, Human, Pair 11/genetics , Histone-Lysine N-Methyltransferase , Humans , In Situ Hybridization, Fluorescence , Infant , Male , Myeloid-Lymphoid Leukemia Protein , Translocation, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...