Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Mol Biol Rep ; 51(1): 713, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824247

ABSTRACT

BACKGROUND: Protease S (PrtS) from Photorhabdus laumondii belongs to the group of protealysin-like proteases (PLPs), which are understudied factors thought to play a role in the interaction of bacteria with other organisms. Since P. laumondii is an insect pathogen and a nematode symbiont, the analysis of the biological functions of PLPs using the PrtS model provides novel data on diverse types of interactions between bacteria and hosts. METHODS AND RESULTS: Recombinant PrtS was produced in Escherichia coli. Efficient inhibition of PrtS activity by photorin, a recently discovered emfourin-like protein inhibitor from P. laumondii, was demonstrated. The Galleria mellonella was utilized to examine the insect toxicity of PrtS and the impact of PrtS on hemolymph proteins in vitro. The insect toxicity of PrtS is reduced compared to protease homologues from non-pathogenic bacteria and is likely not essential for the infection process. However, using proteomic analysis, potential PrtS targets have been identified in the hemolymph. CONCLUSIONS: The spectrum of identified proteins indicates that the function of PrtS is to modulate the insect immune response. Further studies of PLPs' biological role in the PrtS and P. laumondii model must clarify the details of PrtS interaction with the insect immune system during bacterial infection.


Subject(s)
Moths , Peptide Hydrolases , Photorhabdus , Animals , Moths/microbiology , Peptide Hydrolases/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Hemolymph/metabolism , Proteomics/methods , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism
2.
Int J Mol Sci ; 24(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37894929

ABSTRACT

The prevalence of bipolar disorder (BD) in modern society is growing rapidly, but due to the lack of paraclinical criteria, its differential diagnosis with other mental disorders is somewhat challenging. In this regard, the relevance of proteomic studies is increasing due to the development of methods for processing large data arrays; this contributes to the discovery of protein patterns of pathological processes and the creation of new methods of diagnosis and treatment. It seems promising to search for proteins involved in the pathogenesis of BD in an easily accessible material-blood serum. Sera from BD patients and healthy individuals were purified via affinity chromatography to isolate 14 major proteins and separated using 1D SDS-PAGE. After trypsinolysis, the proteins in the samples were identified via HPLC/mass spectrometry. Mass spectrometric data were processed using the OMSSA and X!Tandem search algorithms using the UniProtKB database, and the results were analyzed using PeptideShaker. Differences in proteomes were assessed via an unlabeled NSAF-based analysis using a two-tailed Bonferroni-adjusted t-test. When comparing the blood serum proteomes of BD patients and healthy individuals, 10 proteins showed significant differences in NSAF values. Of these, four proteins were predominantly present in BD patients with the maximum NSAF value: 14-3-3 protein zeta/delta; ectonucleoside triphosphate diphosphohydrolase 7; transforming growth factor-beta-induced protein ig-h3; and B-cell CLL/lymphoma 9 protein. Further exploration of the role of these proteins in BD is warranted; conducting such studies will help develop new paraclinical criteria and discover new targets for BD drug therapy.


Subject(s)
Bipolar Disorder , Humans , Bipolar Disorder/diagnosis , Proteome/metabolism , Proteomics/methods , Mass Spectrometry , Software
3.
Int J Mol Sci ; 24(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37240343

ABSTRACT

Mass spectrometry (MS) is one of the main techniques for protein identification. Herein, MS has been employed for the identification of bovine serum albumin (BSA), which was covalently immobilized on the surface of a mica chip intended for investigation by atomic force microscopy (AFM). For the immobilization, two different types of crosslinkers have been used: 4-benzoylbenzoic acid N-succinimidyl ester (SuccBB) and dithiobis(succinimidyl propionate) (DSP). According to the data obtained by using an AFM-based molecular detector, the SuccBB crosslinker was more efficient in BSA immobilization than the DSP. The type of crosslinker used for protein capturing has been found to affect the results of MS identification. The results obtained herein can be applied in the development of novel systems intended for the highly sensitive analysis of proteins with molecular detectors.


Subject(s)
Serum Albumin, Bovine , Microscopy, Atomic Force/methods , Serum Albumin, Bovine/chemistry , Mass Spectrometry/methods
4.
Int J Mol Sci ; 23(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36362320

ABSTRACT

Steroids with a nitrogen-containing heterocycle in the side chain are known as effective inhibitors of androgen signaling and/or testosterone biosynthesis, thus showing beneficial effects for the treatment of prostate cancer. In this work, a series of 3ß-hydroxy-5-ene steroids, containing an isoxazole fragment in their side chain, was synthesized. The key steps included the preparation of Weinreb amide, its conversion to acetylenic ketones, and the 1,2- or 1,4-addition of hydroxylamine, depending on the solvent used. The biological activity of the obtained compounds was studied in a number of tests, including their effects on 17α-hydroxylase and 17,20-lyase activity of human CYP17A1 and the ability of selected compounds to affect the downstream androgen receptor signaling. Three derivatives diminished the transcriptional activity of androgen receptor and displayed reasonable antiproliferative activity. The candidate compound, 24j (17R)-17-((3-(2-hydroxypropan-2-yl)isoxazol-5-yl)methyl)-androst-5-en-3ß-ol, suppressed the androgen receptor signaling and decreased its protein level in two prostate cancer cell lines, LNCaP and LAPC-4. Interaction of compounds with CYP17A1 and the androgen receptor was confirmed and described by molecular docking.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Male , Humans , Receptors, Androgen/metabolism , Molecular Docking Simulation , Steroid 17-alpha-Hydroxylase/metabolism , Antineoplastic Agents/chemistry , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Steroids/pharmacology , Steroids/therapeutic use , Cell Line, Tumor
5.
Fundam Clin Pharmacol ; 34(1): 120-130, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31286572

ABSTRACT

Potential drug-drug interactions of the antitumor drug abiraterone and the macrolide antibiotic erythromycin were studied at the stage of cytochrome P450 3A4 (CYP3A4) biotransformation. Using differential spectroscopy, we have shown that abiraterone is a type II ligand of CYP3A4. The dependence of CYP3A4 spectral changes on the concentration of abiraterone is sigmoidal, which indicates cooperative interactions of CYP3A4 with abiraterone; these interactions were confirmed by molecular docking. The dissociation constant (Kd ) and Hill coefficient (h) values for the CYP3A4-abiraterone complex were calculated as 3.8 ± 0.1 µM and 2.3 ± 0.2, respectively. An electrochemical enzymatic system based on CYP3A4 immobilized on a screen-printed electrode was used to show that abiraterone acts as a competitive inhibitor toward erythromycin N-demethylase activity of CYP3A4 (apparent Ki  = 8.1 ± 1.2 µM), while erythromycin and its products of enzymatic metabolism do not affect abiraterone N-oxidation by CYP3A4. In conclusion, the inhibition properties of abiraterone toward CYP3A4-dependent N-demethylation of erythromycin and the biologically inert behavior of erythromycin toward abiraterone hydroxylation were demonstrated.


Subject(s)
Androstenes/pharmacology , Anti-Bacterial Agents/pharmacokinetics , Cytochrome P-450 CYP3A/drug effects , Erythromycin/pharmacokinetics , Antineoplastic Agents/pharmacology , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Drug Interactions , Humans , Hydroxylation , Molecular Docking Simulation
6.
Biosci Rep ; 40(8)2020 08 28.
Article in English | MEDLINE | ID: mdl-29500317

ABSTRACT

Transketolase catalyzes the transfer of a glycolaldehyde residue from ketose (the donor substrate) to aldose (the acceptor substrate). In the absence of aldose, transketolase catalyzes a one-substrate reaction that involves only ketose. The mechanism of this reaction is unknown. Here, we show that hydroxypyruvate serves as a substrate for the one-substrate reaction and, as well as with the xylulose-5-phosphate, the reaction product is erythrulose rather than glycolaldehyde. The amount of erythrulose released into the medium is equimolar to a double amount of the transformed substrate. This could only be the case if the glycol aldehyde formed by conversion of the first ketose molecule (the product of the first half reaction) remains bound to the enzyme, waiting for condensation with the second molecule of glycol aldehyde. Using mass spectrometry of catalytic intermediates and their subsequent fragmentation, we show here that interaction of the holotransketolase with hydroxypyruvate results in the equiprobable binding of the active glycolaldehyde to the thiazole ring of thiamine diphosphate and to the amino group of its aminopyrimidine ring. We also show that these two loci can accommodate simultaneously two glycolaldehyde molecules. It explains well their condensation without release into the medium, which we have shown earlier.


Subject(s)
Pentosephosphates/metabolism , Pyruvates/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Tetroses/metabolism , Transketolase/metabolism , Binding Sites , Catalytic Domain , Kinetics , Molecular Dynamics Simulation , Pentosephosphates/chemistry , Protein Binding , Protein Conformation , Pyruvates/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship , Substrate Specificity , Tandem Mass Spectrometry , Tetroses/chemistry , Transketolase/chemistry
7.
J Proteome Res ; 18(1): 120-129, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30480452

ABSTRACT

This work continues the series of the quantitative measurements of the proteins encoded by different chromosomes in the blood plasma of a healthy person. Selected Reaction Monitoring with Stable Isotope-labeled peptide Standards (SRM SIS) and a gene-centric approach, which is the basis for the implementation of the international Chromosome-centric Human Proteome Project (C-HPP), were applied for the quantitative measurement of proteins in human blood plasma. Analyses were carried out in the frame of C-HPP for each protein-coding gene of the four human chromosomes: 18, 13, Y, and mitochondrial. Concentrations of proteins encoded by 667 genes were measured in 54 blood plasma samples of the volunteers, whose health conditions were consistent with requirements for astronauts. The gene list included 276, 329, 47, and 15 genes of chromosomes 18, 13, Y, and the mitochondrial chromosome, respectively. This paper does not make claims about the detection of missing proteins. Only 205 proteins (30.7%) were detected in the samples. Of them, 84, 106, 10, and 5 belonged to chromosomes 18, 13, and Y and the mitochondrial chromosome, respectively. Each detected protein was found in at least one of the samples analyzed. The SRM SIS raw data are available in the ProteomeXchange repository (PXD004374, PASS01192).


Subject(s)
Chromosomes, Human/chemistry , Plasma/chemistry , Proteome , Chromosomes, Human/genetics , Chromosomes, Human, Pair 13/chemistry , Chromosomes, Human, Pair 18/chemistry , Chromosomes, Human, Y/chemistry , Databases, Protein , Healthy Volunteers , Humans , Mitochondria/ultrastructure , Proteome/genetics
8.
Steroids ; 138: 82-90, 2018 10.
Article in English | MEDLINE | ID: mdl-30033342

ABSTRACT

Conjugates of 17α-substituted testosterone (1 and 2) and 17ß-substituted epitestosterone (3 and 4) with pyropheophorbide a were synthesized. The scheme consisted of synthesis of 17α-hydroxy-3-oxopregn-4-en-21-oic and 17ß-hydroxy-3-oxopregn-4-en-21-oic acids, and their coupling with pyropheophorbide a by means of either ethylene diamine, or 1,5-diamino pentane linkers. Mutual influence of steroidal and macrocyclic fragments in conjugates molecules was dependent on configuration of C17 and length of linker, that was established by analysis of 1H NMR spectra and molecular models of conjugates. Studies of interaction of conjugates with prostate carcinoma cells revealed that their uptake and internalization were independent on the androgen receptor activity, but dependent on the structure of conjugates, decreasing in the following row: 3 > 4 ≥ 1 > 2. Conjugates significantly decreased the LNCaP and PC-3 cells growth at 96 h incubation. Epitestosterone derivatives 3 and 4 also showed superior anti-proliferative activity versus testosterone ones. Conformationally more rigid conjugates 1 and 3, comprising short linkers, were more active than those with long linkers; conjugate 3 was the most potent.


Subject(s)
Antineoplastic Agents/chemistry , Chlorophyll/analogs & derivatives , Epitestosterone/chemistry , Testosterone/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival , Chlorophyll/chemistry , Humans , Male , PC-3 Cells , Prostatic Neoplasms/metabolism , Structure-Activity Relationship
9.
Anal Biochem ; 513: 28-35, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27567992

ABSTRACT

Direct electrochemistry and bioelectrocatalysis of a newly discovered C-19 steroid 1α-hydroxylase (CYP260A1) from the myxobacterium Sorangium cellulosum So ce56 were investigated. CYP260A1 was immobilized on screen-printed graphite electrodes (SPE) modified with gold nanoparticles, stabilized by didodecyldimethylammonium bromide (SPE/DDAB/Au). Cyclic voltammograms in argon-saturated substrate free 0.1 M potassium phosphate buffer, pH 7.4, and in enzyme-substrate complex with androstenedione demonstrated a redox processes with a single redox couple of E(0') of -299 ± 16 mV and -297.5 ± 21 mV (vs. Ag/AgCl), respectively. CYP260A1 exhibited an electrocatalytic activity detected by an increase of the reduction current in the presence of dissolved oxygen and upon addition of the substrate (androstenedione) in the air-saturated buffer. The catalytic current of the enzyme correlated with substrate concentration in the electrochemical system and this dependence can be described by electrochemical Michaelis-Menten model. The products of CYP260A1-depended electrolysis at controlled working electrode potential of androstenedione were analyzed by mass-spectrometry. MS analysis revealed a mono-hydroxylated product of CYP260A1-dependent electrocatalytic reaction towards androstenedione.


Subject(s)
Androsterone/analysis , Bacterial Proteins/chemistry , Cytochrome P-450 Enzyme System/chemistry , Electrochemical Techniques , Enzymes, Immobilized/chemistry , Myxococcales/enzymology , Catalysis , Gold/chemistry , Graphite/chemistry , Metal Nanoparticles/chemistry
10.
J Proteome Res ; 15(11): 4039-4046, 2016 11 04.
Article in English | MEDLINE | ID: mdl-27457493

ABSTRACT

This work was aimed at estimating the concentrations of proteins encoded by human chromosome 18 (Chr 18) in plasma samples of 54 healthy male volunteers (aged 20-47). These young persons have been certified by the medical evaluation board as healthy subjects ready for space flight training. Over 260 stable isotope-labeled peptide standards (SIS) were synthesized to perform the measurements of proteins encoded by Chr 18. Selected reaction monitoring (SRM) with SIS allowed an estimate of the levels of 84 of 276 proteins encoded by Chr 18. These proteins were quantified in whole and depleted plasma samples. Concentration of the proteins detected varied from 10-6 M (transthyretin, P02766) to 10-11 M (P4-ATPase, O43861). A minor part of the proteins (mostly representing intracellular proteins) was characterized by extremely high inter individual variations. The results provide a background for studies of a potential biomarker in plasma among proteins encoded by Chr 18. The SRM raw data are available in ProteomeXchange repository (PXD004374).


Subject(s)
Astronauts , Chromosomes, Human, Pair 18 , Plasma/chemistry , Proteome/analysis , Adenosine Triphosphatases/analysis , Adult , Healthy Volunteers , Humans , Middle Aged , Prealbumin/analysis , Young Adult
11.
FEMS Microbiol Ecol ; 92(5): fiw046, 2016 May.
Article in English | MEDLINE | ID: mdl-26929439

ABSTRACT

As a result of construction and screening of a metagenomic library prepared from a permafrost-derived microcosm, we have isolated a novel gene coding for a putative lipolytic enzyme that belongs to the hormone-sensitive lipase family. It encodes a polypeptide of 343 amino acid residues whose amino acid sequence displays maximum likelihood with uncharacterized proteins from Sphingomonas species. A putative catalytic serine residue of PMGL2 resides in a new variant of a recently discovered GTSAG sequence in which a Thr residue is replaced by a Cys residue (GCSAG). The recombinant PMGL2 was produced in Escherichia coli cells and purified by Ni-affinity chromatography. The resulting protein preferably utilizes short-chain p-nitrophenyl esters (C4 and C8) and therefore is an esterase. It possesses maximum activity at 45°C in slightly alkaline conditions and has limited thermostability at higher temperatures. Activity of PMGL2 is stimulated in the presence of 0.25-1.5 M NaCl indicating the good salt tolerance of the new enzyme. Mass spectrometric analysis demonstrated that N-terminal methionine in PMGL2 is processed and cysteine residues do not form a disulfide bond. The results of the study demonstrate the significance of the permafrost environment as a unique genetic reservoir and its potential for metagenomic exploration.


Subject(s)
Esterases/genetics , Esterases/isolation & purification , Gene Library , Metagenome , Permafrost/microbiology , Amino Acid Motifs , Cloning, Molecular , Escherichia coli/genetics , Esterases/chemistry , Esterases/metabolism , Hydrogen-Ion Concentration , Olive Oil/metabolism , Protein Processing, Post-Translational , Substrate Specificity
12.
Bioorg Med Chem ; 21(17): 5420-7, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23820573

ABSTRACT

The chemical synthesis of six lipophilic conjugates of chlorins was carried out, in which lipophilic fragment (either hexadecyl- or cholest-5-en-3ß-yloxyethyl-) bound to 13(1)-, 15(2)-, 17(3)-positions of macrocycle by formation of related carboxamides. Structure of synthesized conjugates was studied by spectral methods and molecular modeling. Lipophilic conjugates of chlorins, being mixed with egg yolk phosphatidyl choline, formed mixed micelles stable in aqueous media under physiological conditions. Mixed micelles of conjugates with phosphatidyl choline differing in stoichiometric compositions were prepared and characterized by absorption spectra, electron microscopy and laser scattering. These micelles were found to bind and internalized by human breast carcinoma MCF-7 cells. The presented data reveal that modification of macrocycle with lipophilic substituents, solubilization of obtained conjugates in aqueous medium as mixed micelles with phospholipids, and transfer of mixed micelles to cells is simple approach for targeting of chlorin derivatives, which apparently may be used in photodynamic therapy.


Subject(s)
Micelles , Phospholipids/chemistry , Porphyrins/chemistry , Humans , MCF-7 Cells , Models, Chemical , Phosphatidylcholines/chemistry , Porphyrins/chemical synthesis , Porphyrins/metabolism , Water/chemistry
13.
Steroids ; 77(1-2): 77-84, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22064217

ABSTRACT

The facile synthesis of six [17(20)Z]- and [17(20)E]-isomeric 3ß-hydroxy-pregna-5,17(20)-dien-21-oyl amides and three [17(20)E]-3ß-hydroxy-2-[prergna-5,17(20)-dien-20-yl]-oxazolines from pregnenolone is presented. The synthetic scheme consists of transformation of pregnenolone into the known 17α-bromo-21-iodo-3ß-acetoxypregn-5-en-20-one followed by reaction with ethanolamine, 2-methyl-2-aminopropanol, and (1-aminocyclohexyl)methanol resulted in mixture of [17(20)E]- and [17(20)Z]-pregna-5,17(20)-dien-21-(2-hydroxy)-oyl amides; separation of [17(20)E]- and [17(20)Z]-isomers; their cyclization into [17(20)E]-oxazolines under action of POCl(3) in pyridine, and removal of acetate protecting groups. Significantly different orientation of nitrogen containing substituents in [17(20)Z]- and [17(20)E]-isomers regarding to steroid backbone enables their configuration to be easily identified by NMR spectroscopy. All synthesized compounds did not exhibit marked toxic effects in three cell lines (MCF-7, Hep G2, and LNCaP). In androgen-sensitive LNCaP cells all testing compounds at concentrations of 50 nM potently stimulated proliferation.


Subject(s)
Chemistry, Pharmaceutical , Pregnadienes/chemical synthesis , Pregnenolone/chemistry , Amides/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclization , Ethanolamine/chemistry , Humans , Isomerism , Magnetic Resonance Spectroscopy , Models, Molecular , Oxazoles/chemistry , Pregnadienes/analysis , Pregnadienes/pharmacology , Propanolamines/chemistry , Pyridines/chemistry
14.
Bioorg Med Chem Lett ; 20(18): 5495-8, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20702093

ABSTRACT

Reaction of 17alpha-bromo-21-iodo-3beta-acetoxypregn-5-en-20-one with ammonia, primary, and secondary amines is simple and convenient method for preparation of [17(20)E]- and [17(20)Z]-pregna-5,17(20)-dien-21-oylamides. Synthesis and characteristics of 12 related amides are presented. Primary testing on cells proliferation indicated differing effects of synthesized compounds on androgen insensitive MCF-7 cells and androgen sensitive LNCaP cells.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Pregnenolone/analogs & derivatives , Pregnenolone/pharmacology , Androgens/metabolism , Antineoplastic Agents/chemical synthesis , Breast Neoplasms/drug therapy , Carcinoma/drug therapy , Cell Line, Tumor , Female , Humans , Male , Pregnenolone/chemical synthesis , Prostatic Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...