Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 150(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38078653

ABSTRACT

In recent years, there have been notable advancements in the ability to programme human cell identity, enabling us to design and manipulate cell function in a Petri dish. However, current protocols for generating target cell types often lack efficiency and precision, resulting in engineered cells that do not fully replicate the desired identity or functional output. This applies to different methods of cell programming, which face similar challenges that hinder progress and delay the achievement of a more favourable outcome. However, recent technological and analytical breakthroughs have provided us with unprecedented opportunities to advance the way we programme cell fate. The Company of Biologists' 2023 workshop on 'Novel Technologies for Programming Human Cell Fate' brought together experts in human cell fate engineering and experts in single-cell genomics, manipulation and characterisation of cells on a single (sub)cellular level. Here, we summarise the main points that emerged during the workshop's themed discussions. Furthermore, we provide specific examples highlighting the current state of the field as well as its trajectory, offering insights into the potential outcomes resulting from the application of these breakthrough technologies in precisely engineering the identity and function of clinically valuable human cells.


Subject(s)
Cellular Reprogramming , Humans , Cell Differentiation
2.
Front Cell Dev Biol ; 11: 1111684, 2023.
Article in English | MEDLINE | ID: mdl-37261075

ABSTRACT

Domestic pigs (Sus scrofa) share many genetic, anatomical, and physiological traits with humans and therefore constitute an excellent preclinical animal model. Fundamental understanding of the cellular and molecular processes governing early porcine cardiogenesis is critical for developing advanced porcine models used for the study of heart diseases and new regenerative therapies. Here, we provide a detailed characterization of porcine cardiogenesis based on fetal porcine hearts at various developmental stages and cardiac cells derived from porcine expanded pluripotent stem cells (pEPSCs), i.e., stem cells having the potential to give rise to both embryonic and extraembryonic tissue. We notably demonstrate for the first time that pEPSCs can differentiate into cardiovascular progenitor cells (CPCs), functional cardiomyocytes (CMs), epicardial cells and epicardial-derived cells (EPDCs) in vitro. Furthermore, we present an enhanced system for whole-embryo culture which allows continuous ex utero development of porcine post-implantation embryos from the cardiac crescent stage (ED14) up to the cardiac looping (ED17) stage. These new techniques provide a versatile platform for studying porcine cardiac development and disease modeling.

3.
Nat Commun ; 14(1): 1722, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37012244

ABSTRACT

Cardiogenesis relies on the precise spatiotemporal coordination of multiple progenitor populations. Understanding the specification and differentiation of these distinct progenitor pools during human embryonic development is crucial for advancing our knowledge of congenital cardiac malformations and designing new regenerative therapies. By combining genetic labelling, single-cell transcriptomics, and ex vivo human-mouse embryonic chimeras we uncovered that modulation of retinoic acid signaling instructs human pluripotent stem cells to form heart field-specific progenitors with distinct fate potentials. In addition to the classical first and second heart fields, we observed the appearance of juxta-cardiac field progenitors giving rise to both myocardial and epicardial cells. Applying these findings to stem-cell based disease modelling we identified specific transcriptional dysregulation in first and second heart field progenitors derived from stem cells of patients with hypoplastic left heart syndrome. This highlights the suitability of our in vitro differentiation platform for studying human cardiac development and disease.


Subject(s)
Pluripotent Stem Cells , Tretinoin , Humans , Animals , Mice , Tretinoin/pharmacology , Heart , Myocardium , Cell Differentiation , Myocytes, Cardiac
4.
Nat Biotechnol ; 41(12): 1787-1800, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37012447

ABSTRACT

The epicardium, the mesothelial envelope of the vertebrate heart, is the source of multiple cardiac cell lineages during embryonic development and provides signals that are essential to myocardial growth and repair. Here we generate self-organizing human pluripotent stem cell-derived epicardioids that display retinoic acid-dependent morphological, molecular and functional patterning of the epicardium and myocardium typical of the left ventricular wall. By combining lineage tracing, single-cell transcriptomics and chromatin accessibility profiling, we describe the specification and differentiation process of different cell lineages in epicardioids and draw comparisons to human fetal development at the transcriptional and morphological levels. We then use epicardioids to investigate the functional cross-talk between cardiac cell types, gaining new insights into the role of IGF2/IGF1R and NRP2 signaling in human cardiogenesis. Finally, we show that epicardioids mimic the multicellular pathogenesis of congenital or stress-induced hypertrophy and fibrotic remodeling. As such, epicardioids offer a unique testing ground of epicardial activity in heart development, disease and regeneration.


Subject(s)
Heart , Pericardium , Humans , Pericardium/metabolism , Myocardium , Cell Differentiation/genetics , Cell Lineage/genetics , Biology
5.
Nat Cell Biol ; 24(5): 659-671, 2022 05.
Article in English | MEDLINE | ID: mdl-35550611

ABSTRACT

Heart regeneration is an unmet clinical need, hampered by limited renewal of adult cardiomyocytes and fibrotic scarring. Pluripotent stem cell-based strategies are emerging, but unravelling cellular dynamics of host-graft crosstalk remains elusive. Here, by combining lineage tracing and single-cell transcriptomics in injured non-human primate heart biomimics, we uncover the coordinated action modes of human progenitor-mediated muscle repair. Chemoattraction via CXCL12/CXCR4 directs cellular migration to injury sites. Activated fibroblast repulsion targets fibrosis by SLIT2/ROBO1 guidance in organizing cytoskeletal dynamics. Ultimately, differentiation and electromechanical integration lead to functional restoration of damaged heart muscle. In vivo transplantation into acutely and chronically injured porcine hearts illustrated CXCR4-dependent homing, de novo formation of heart muscle, scar-volume reduction and prevention of heart failure progression. Concurrent endothelial differentiation contributed to graft neovascularization. Our study demonstrates that inherent developmental programmes within cardiac progenitors are sequentially activated in disease, enabling the cells to sense and counteract acute and chronic injury.


Subject(s)
Nerve Tissue Proteins , Pluripotent Stem Cells , Animals , Cell Differentiation , Cicatrix/pathology , Cicatrix/prevention & control , Fibrosis , Humans , Myocardium/pathology , Myocytes, Cardiac/pathology , Pluripotent Stem Cells/pathology , Receptors, Immunologic , Swine
6.
J Vis Exp ; (139)2018 09 27.
Article in English | MEDLINE | ID: mdl-30320759

ABSTRACT

Cardiomyocytes generated from human induced pluripotent stem cells (iPSC-CMs) are an emerging tool in cardiovascular research. Rather than being a homogenous population of cells, the iPSC-CMs generated by current differentiation protocols represent a mixture of cells with ventricular-, atrial-, and nodal-like phenotypes, which complicates phenotypic analyses. Here, a method to optically record action potentials specifically from ventricular-like iPSC-CMs is presented. This is achieved by lentiviral transduction with a construct in which a genetically-encoded voltage indicator is under the control of a ventricular-specific promoter element. When iPSC-CMs are transduced with this construct, the voltage sensor is expressed exclusively in ventricular-like cells, enabling subtype-specific optical membrane potential recordings using time-lapse fluorescence microscopy.


Subject(s)
Action Potentials/physiology , Heart Ventricles/cytology , Myocytes, Cardiac/physiology , Cell Differentiation , Humans , Induced Pluripotent Stem Cells , Membrane Potentials
7.
EMBO J ; 37(12)2018 06 15.
Article in English | MEDLINE | ID: mdl-29764980

ABSTRACT

Cell-cell and cell-matrix interactions guide organ development and homeostasis by controlling lineage specification and maintenance, but the underlying molecular principles are largely unknown. Here, we show that in human developing cardiomyocytes cell-cell contacts at the intercalated disk connect to remodeling of the actin cytoskeleton by regulating the RhoA-ROCK signaling to maintain an active MRTF/SRF transcriptional program essential for cardiomyocyte identity. Genetic perturbation of this mechanosensory pathway activates an ectopic fat gene program during cardiomyocyte differentiation, which ultimately primes the cells to switch to the brown/beige adipocyte lineage in response to adipogenesis-inducing signals. We also demonstrate by in vivo fate mapping and clonal analysis of cardiac progenitors that cardiac fat and a subset of cardiac muscle arise from a common precursor expressing Isl1 and Wt1 during heart development, suggesting related mechanisms of determination between the two lineages.


Subject(s)
Cell Communication , Mechanotransduction, Cellular , Myocytes, Cardiac/metabolism , Trans-Activators/metabolism , rhoA GTP-Binding Protein/metabolism , Adipogenesis , Animals , Cell Differentiation , Gene Expression Regulation , Humans , LIM-Homeodomain Proteins/biosynthesis , Mice , Mice, SCID , Myocytes, Cardiac/cytology , Trans-Activators/genetics , Transcription Factors/biosynthesis , WT1 Proteins/biosynthesis , rhoA GTP-Binding Protein/genetics
8.
Stem Cells ; 36(5): 655-670, 2018 05.
Article in English | MEDLINE | ID: mdl-29314416

ABSTRACT

MicroRNAs (miRNAs) are known regulators of various cellular processes, including pluripotency and differentiation of embryonic stem cells (ESCs). We analyzed differentiation of two ESC lines-D3 and B8, and observed significant differences in the expression of miRNAs and genes involved in pluripotency and differentiation. We also examined if transient miRNA overexpression could serve as a sufficient impulse modulating differentiation of mouse ESCs. ESCs were transfected with miRNA Mimics and differentiated in embryoid bodies and embryoid body outgrowths. miRNAs involved in differentiation of mesodermal lineages, such as miR145 and miR181, as well as miRNAs regulating myogenesis (MyomiRs)-miR1, miR133a, miR133b, and miR206 were tested. Using such approach, we proved that transient overexpression of molecules selected by us modulated differentiation of mouse ESCs. Increase in miR145 levels upregulated Pax3, Pax7, Myod1, Myog, and MyHC2, while miR181 triggered the expression of such crucial myogenic factors as Myf5 and MyHC2. As a result, the ability of ESCs to initiate myogenic differentiation and form myotubes was enhanced. Premature expression of MyomiRs had, however, an adverse effect on myogenic differentiation of ESCs. Stem Cells 2018;36:655-670.


Subject(s)
Embryonic Stem Cells/cytology , MicroRNAs/genetics , Muscle Development/genetics , Myoblasts/cytology , Animals , Cell Differentiation/physiology , Cells, Cultured , Embryoid Bodies/physiology , Mice , Muscle Development/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...