Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Med Chem ; 65(16): 11177-11186, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35930799

ABSTRACT

Bromodomains are acetyllysine recognition domains present in a variety of human proteins. Bromodomains also bind small molecules that compete with acetyllysine, and therefore bromodomains have been targets for drug discovery efforts. Highly potent and selective ligands with good cellular permeability have been proposed as chemical probes for use in exploring the functions of many of the bromodomain proteins. We report here the discovery of a class of such inhibitors targeting the family VIII bromodomains of SMARCA2 (BRM) and SMARCA4 (BRG1), and PBRM1 (polybromo-1) bromodomain 5. We propose one example from this series, GNE-064, as a chemical probe for the bromodomains SMARCA2, SMARCA4, and PBRM1(5) with the potential for in vivo use.


Subject(s)
DNA Helicases , Transcription Factors , DNA-Binding Proteins , Humans , Nuclear Proteins , Protein Domains
2.
J Med Chem ; 61(20): 9301-9315, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30289257

ABSTRACT

The biological functions of the dual bromodomains of human transcription-initiation-factor TFIID subunit 1 (TAF1(1,2)) remain unknown, although TAF1 has been identified as a potential target for oncology research. Here, we describe the discovery of a potent and selective in vitro tool compound for TAF1(2), starting from a previously reported lead. A cocrystal structure of lead compound 2 bound to TAF1(2) enabled structure-based design and structure-activity-relationship studies that ultimately led to our in vitro tool compound, 27 (GNE-371). Compound 27 binds TAF1(2) with an IC50 of 10 nM while maintaining excellent selectivity over other bromodomain-family members. Compound 27 is also active in a cellular-TAF1(2) target-engagement assay (IC50 = 38 nM) and exhibits antiproliferative synergy with the BET inhibitor JQ1, suggesting engagement of endogenous TAF1 by 27 and further supporting the use of 27 in mechanistic and target-validation studies.


Subject(s)
Benzimidazoles/metabolism , Drug Design , Molecular Probes/metabolism , Transcription Factor TFIID/chemistry , Transcription Factor TFIID/metabolism , Humans , Models, Molecular , Protein Conformation , Protein Domains
3.
Mol Pharmacol ; 94(2): 823-833, 2018 08.
Article in English | MEDLINE | ID: mdl-29853495

ABSTRACT

Kynurenic acid (KYNA) plays a significant role in maintaining normal brain function, and abnormalities in KYNA levels have been associated with various central nervous system disorders. Confirmation of its causality in human diseases requires safe and effective modulation of central KYNA levels in the clinic. The kynurenine aminotransferases (KAT) II enzyme represents an attractive target for pharmacologic modulation of central KYNA levels; however, KAT II and KYNA turnover kinetics, which could contribute to the duration of pharmacologic effect, have not been reported. In this study, the kinetics of central KYNA-lowering effect in rats and nonhuman primates (NHPs, Cynomolgus macaques) was investigated using multiple KAT II irreversible inhibitors as pharmacologic probes. Mechanistic pharmacokinetic-pharmacodynamic analysis of in vivo responses to irreversible inhibition quantitatively revealed that 1) KAT II turnover is relatively slow [16-76 hours' half-life (t1/2)], whereas KYNA is cleared more rapidly from the brain (<1 hour t1/2) in both rats and NHPs, 2) KAT II turnover is slower in NHPs than in rats (76 hours vs. 16 hours t1/2, respectively), and 3) the percent contribution of KAT II to KYNA formation is constant (∼80%) across rats and NHPs. Additionally, modeling results enabled establishment of in vitro-in vivo correlation for both enzyme turnover rates and drug potencies. In summary, quantitative translational analysis confirmed the feasibility of central KYNA modulation in humans. Model-based analysis, where system-specific properties and drug-specific properties are mechanistically separated from in vivo responses, enabled quantitative understanding of the KAT II-KYNA pathway, as well as assisted development of promising candidates to test KYNA hypothesis in humans.


Subject(s)
Brain/metabolism , Enzyme Inhibitors/administration & dosage , Kynurenic Acid/analysis , Transaminases/metabolism , Animals , Brain Chemistry/drug effects , Cells, Cultured , Chromatography, Liquid , Enzyme Inhibitors/pharmacology , Female , Half-Life , Humans , Macaca fascicularis , Male , Pyrazoles/administration & dosage , Pyrazoles/pharmacology , Rats , Tandem Mass Spectrometry , Transaminases/antagonists & inhibitors
4.
ACS Med Chem Lett ; 8(7): 737-741, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28740608

ABSTRACT

The biological function of bromodomains, epigenetic readers of acetylated lysine residues, remains largely unknown. Herein we report our efforts to discover a potent and selective inhibitor of the bromodomain of cat eye syndrome chromosome region candidate 2 (CECR2). Screening of our internal medicinal chemistry collection led to the identification of a pyrrolopyridone chemical lead, and subsequent structure-based drug design led to a potent and selective CECR2 bromodomain inhibitor (GNE-886) suitable for use as an in vitro tool compound.

5.
Bioorg Med Chem Lett ; 27(15): 3534-3541, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28606761

ABSTRACT

Bromodomain-containing protein 9 (BRD9), an epigenetic "reader" of acetylated lysines on post-translationally modified histone proteins, is upregulated in multiple cancer cell lines. To assess the functional role of BRD9 in cancer cell lines, we identified a small-molecule inhibitor of the BRD9 bromodomain. Starting from a pyrrolopyridone lead, we used structure-based drug design to identify a potent and highly selective in vitro tool compound 11, (GNE-375). While this compound showed minimal effects in cell viability or gene expression assays, it showed remarkable potency in preventing the emergence of a drug tolerant population in EGFR mutant PC9 cells treated with EGFR inhibitors. Such tolerance has been linked to an altered epigenetic state, and 11 decreased BRD9 binding to chromatin, and this was associated with decreased expression of ALDH1A1, a gene previously shown to be important in drug tolerance. BRD9 inhibitors may therefore show utility in preventing epigenetically-defined drug resistance.


Subject(s)
Drug Resistance/drug effects , Epigenesis, Genetic/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Transcription Factors/antagonists & inhibitors , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase 1 Family , Cell Line, Tumor , Drug Design , Drug Resistance, Neoplasm/drug effects , Humans , Molecular Docking Simulation , Pyridones/chemistry , Pyridones/pharmacology , Retinal Dehydrogenase , Transcription Factors/metabolism
6.
J Med Chem ; 59(23): 10549-10563, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27682507

ABSTRACT

The single bromodomain of the closely related transcriptional regulators CBP/EP300 is a target of much recent interest in cancer and immune system regulation. A co-crystal structure of a ligand-efficient screening hit and the CBP bromodomain guided initial design targeting the LPF shelf, ZA loop, and acetylated lysine binding regions. Structure-activity relationship studies allowed us to identify a more potent analogue. Optimization of permeability and microsomal stability and subsequent improvement of mouse hepatocyte stability afforded 59 (GNE-272, TR-FRET IC50 = 0.02 µM, BRET IC50 = 0.41 µM, BRD4(1) IC50 = 13 µM) that retained the best balance of cell potency, selectivity, and in vivo PK. Compound 59 showed a marked antiproliferative effect in hematologic cancer cell lines and modulates MYC expression in vivo that corresponds with antitumor activity in an AML tumor model.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Pyrazoles/pharmacology , Pyridones/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dogs , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Madin Darby Canine Kidney Cells , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridones/chemical synthesis , Pyridones/chemistry , Structure-Activity Relationship
8.
J Med Chem ; 59(11): 5391-402, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27219867

ABSTRACT

The biological role played by non-BET bromodomains remains poorly understood, and it is therefore imperative to identify potent and highly selective inhibitors to effectively explore the biology of individual bromodomain proteins. A ligand-efficient nonselective bromodomain inhibitor was identified from a 6-methyl pyrrolopyridone fragment. Small hydrophobic substituents replacing the N-methyl group were designed directing toward the conserved bromodomain water pocket, and two distinct binding conformations were then observed. The substituents either directly displaced and rearranged the conserved solvent network, as in BRD4(1) and TAF1(2), or induced a narrow hydrophobic channel adjacent to the lipophilic shelf, as in BRD9 and CECR2. The preference of distinct substituents for individual bromodomains provided selectivity handles useful for future lead optimization efforts for selective BRD9, CECR2, and TAF1(2) inhibitors.


Subject(s)
Histone Acetyltransferases/antagonists & inhibitors , Nuclear Proteins/antagonists & inhibitors , Pyridones/pharmacology , Pyrroles/pharmacology , TATA-Binding Protein Associated Factors/antagonists & inhibitors , Transcription Factor TFIID/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Water/chemistry , Binding Sites/drug effects , Cell Cycle Proteins , Dose-Response Relationship, Drug , Fluorescence Resonance Energy Transfer , Fluorometry , Histone Acetyltransferases/metabolism , Humans , Ligands , Models, Molecular , Molecular Conformation , Nuclear Proteins/metabolism , Pyridones/chemical synthesis , Pyridones/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/metabolism , Transcription Factors/metabolism
9.
ACS Med Chem Lett ; 7(5): 531-6, 2016 May 12.
Article in English | MEDLINE | ID: mdl-27190605

ABSTRACT

CBP and EP300 are highly homologous, bromodomain-containing transcription coactivators involved in numerous cellular pathways relevant to oncology. As part of our effort to explore the potential therapeutic implications of selectively targeting bromodomains, we set out to identify a CBP/EP300 bromodomain inhibitor that was potent both in vitro and in cellular target engagement assays and was selective over the other members of the bromodomain family. Reported here is a series of cell-potent and selective probes of the CBP/EP300 bromodomains, derived from the fragment screening hit 4-methyl-1,3,4,5-tetrahydro-2H-benzo[b][1,4]diazepin-2-one.

10.
J Biol Chem ; 291(25): 13014-27, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27056325

ABSTRACT

Covalent modification of histones is a fundamental mechanism of regulated gene expression in eukaryotes, and interpretation of histone modifications is an essential feature of epigenetic control. Bromodomains are specialized binding modules that interact with acetylated histones, linking chromatin recognition to gene transcription. Because of their ability to function in a domain-specific fashion, selective disruption of bromodomain:acetylated histone interactions with chemical probes serves as a powerful means for understanding biological processes regulated by these chromatin adaptors. Here we describe the discovery and characterization of potent and selective small molecule inhibitors for the bromodomains of CREBBP/EP300 that engage their target in cellular assays. We use these tools to demonstrate a critical role for CREBBP/EP300 bromodomains in regulatory T cell biology. Because regulatory T cell recruitment to tumors is a major mechanism of immune evasion by cancer cells, our data highlight the importance of CREBBP/EP300 bromodomain inhibition as a novel, small molecule-based approach for cancer immunotherapy.


Subject(s)
CREB-Binding Protein/antagonists & inhibitors , E1A-Associated p300 Protein/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , T-Lymphocytes, Regulatory/drug effects , Acetylation/drug effects , CREB-Binding Protein/chemistry , CREB-Binding Protein/metabolism , Cell Differentiation/drug effects , Cell Line , Cells, Cultured , E1A-Associated p300 Protein/chemistry , E1A-Associated p300 Protein/metabolism , Forkhead Transcription Factors/metabolism , Histones/metabolism , Humans , Molecular Docking Simulation , Protein Structure, Tertiary/drug effects , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Transcriptome/drug effects
11.
Elife ; 52016 Jan 05.
Article in English | MEDLINE | ID: mdl-26731516

ABSTRACT

Pharmacological inhibition of chromatin co-regulatory factors represents a clinically validated strategy to modulate oncogenic signaling through selective attenuation of gene expression. Here, we demonstrate that CBP/EP300 bromodomain inhibition preferentially abrogates the viability of multiple myeloma cell lines. Selective targeting of multiple myeloma cell lines through CBP/EP300 bromodomain inhibition is the result of direct transcriptional suppression of the lymphocyte-specific transcription factor IRF4, which is essential for the viability of myeloma cells, and the concomitant repression of the IRF4 target gene c-MYC. Ectopic expression of either IRF4 or MYC antagonizes the phenotypic and transcriptional effects of CBP/EP300 bromodomain inhibition, highlighting the IRF4/MYC axis as a key component of its mechanism of action. These findings suggest that CBP/EP300 bromodomain inhibition represents a viable therapeutic strategy for targeting multiple myeloma and other lymphoid malignancies dependent on the IRF4 network.


Subject(s)
Antineoplastic Agents/pharmacology , E1A-Associated p300 Protein/antagonists & inhibitors , Interferon Regulatory Factors/metabolism , Multiple Myeloma/physiopathology , Peptide Fragments/antagonists & inhibitors , Sialoglycoproteins/antagonists & inhibitors , Cell Line, Tumor , Cell Survival/drug effects , Humans
12.
Bioorg Med Chem Lett ; 23(7): 1961-6, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23466229

ABSTRACT

The structure-based design, synthesis, and biological evaluation of a new pyrazole series of irreversible KAT II inhibitors are described herein. The modification of the inhibitor scaffold of 1 and 2 from a dihydroquinolinone core to a tetrahydropyrazolopyridinone core led to discovery of a new series of potent KAT II inhibitors with excellent physicochemical properties. Compound 20 is the most potent and lipophilically efficient of these new pyrazole analogs, with a k(inact)/K(i) value of 112,000 M(-1)s(-1) and lipophilic efficiency (LipE) of 8.53. The X-ray crystal structure of 20 with KAT II demonstrates key features that contribute to this remarkable potency and binding efficiency.


Subject(s)
Drug Design , Enzyme Inhibitors/pharmacology , Pyrazoles/pharmacology , Transaminases/antagonists & inhibitors , Catalytic Domain/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Hydrophobic and Hydrophilic Interactions/drug effects , Models, Molecular , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Structure-Activity Relationship , Transaminases/metabolism
13.
ACS Med Chem Lett ; 4(1): 37-40, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-24900560

ABSTRACT

A series of aryl hydroxamates recently have been disclosed as irreversible inhibitors of kynurenine amino transferase II (KAT II), an enzyme that may play a role in schizophrenia and other psychiatric and neurological disorders. The utilization of structure-activity relationships (SAR) in conjunction with X-ray crystallography led to the discovery of hydroxamate 4, a disubstituted analogue that has a significant potency enhancement due to a novel interaction with KAT II. The use of k inact/K i to assess potency was critical for understanding the SAR in this series and for identifying compounds with improved pharmacodynamic profiles.

14.
Biochem J ; 444(1): 79-88, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22397330

ABSTRACT

SphK (sphingosine kinase) is the major source of the bioactive lipid and GPCR (G-protein-coupled receptor) agonist S1P (sphingosine 1-phosphate). S1P promotes cell growth, survival and migration, and is a key regulator of lymphocyte trafficking. Inhibition of S1P signalling has been proposed as a strategy for treatment of inflammatory diseases and cancer. In the present paper we describe the discovery and characterization of PF-543, a novel cell-permeant inhibitor of SphK1. PF-543 inhibits SphK1 with a K(i) of 3.6 nM, is sphingosine-competitive and is more than 100-fold selective for SphK1 over the SphK2 isoform. In 1483 head and neck carcinoma cells, which are characterized by high levels of SphK1 expression and an unusually high rate of S1P production, PF-543 decreased the level of endogenous S1P 10-fold with a proportional increase in the level of sphingosine. In contrast with past reports that show that the growth of many cancer cell lines is SphK1-dependent, specific inhibition of SphK1 had no effect on the proliferation and survival of 1483 cells, despite a dramatic change in the cellular S1P/sphingosine ratio. PF-543 was effective as a potent inhibitor of S1P formation in whole blood, indicating that the SphK1 isoform of sphingosine kinase is the major source of S1P in human blood. PF-543 is the most potent inhibitor of SphK1 described to date and it will be useful for dissecting specific roles of SphK1-driven S1P signalling.


Subject(s)
Lysophospholipids/metabolism , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Pyrrolidines/pharmacology , Sphingosine/analogs & derivatives , Sulfones/pharmacology , Cell Line, Tumor , Cell Membrane Permeability , Humans , Lysophospholipids/blood , Methanol , Phosphorylation , Pyrrolidines/chemical synthesis , Pyrrolidines/metabolism , Sphingosine/blood , Sphingosine/metabolism , Substrate Specificity , Sulfones/chemical synthesis , Sulfones/metabolism
15.
ACS Med Chem Lett ; 3(3): 187-92, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-24900455

ABSTRACT

Kynurenine aminotransferase (KAT) II has been identified as a potential new target for the treatment of cognitive impairment associated with schizophrenia and other psychiatric disorders. Following a high-throughput screen, cyclic hydroxamic acid PF-04859989 was identified as a potent and selective inhibitor of human and rat KAT II. An X-ray crystal structure and (13)C NMR studies of PF-04859989 bound to KAT II have demonstrated that this compound forms a covalent adduct with the enzyme cofactor, pyridoxal phosphate (PLP), in the active site. In vivo pharmacokinetic and efficacy studies in rat show that PF-04859989 is a brain-penetrant, irreversible inhibitor and is capable of reducing brain kynurenic acid by 50% at a dose of 10 mg/kg (sc). Preliminary structure-activity relationship investigations have been completed and have identified the positions on this scaffold best suited to modification for further optimization of this novel series of KAT II inhibitors.

16.
Proc Natl Acad Sci U S A ; 107(34): 15240-5, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20696890

ABSTRACT

Circadian pacemaking requires the orderly synthesis, posttranslational modification, and degradation of clock proteins. In mammals, mutations in casein kinase 1 (CK1) epsilon or delta can alter the circadian period, but the particular functions of the WT isoforms within the pacemaker remain unclear. We selectively targeted WT CK1epsilon and CK1delta using pharmacological inhibitors (PF-4800567 and PF-670462, respectively) alongside genetic knockout and knockdown to reveal that CK1 activity is essential to molecular pacemaking. Moreover, CK1delta is the principal regulator of the clock period: pharmacological inhibition of CK1delta, but not CK1epsilon, significantly lengthened circadian rhythms in locomotor activity in vivo and molecular oscillations in the suprachiasmatic nucleus (SCN) and peripheral tissue slices in vitro. Period lengthening mediated by CK1delta inhibition was accompanied by nuclear retention of PER2 protein both in vitro and in vivo. Furthermore, phase mapping of the molecular clockwork in vitro showed that PF-670462 treatment lengthened the period in a phase-specific manner, selectively extending the duration of PER2-mediated transcriptional feedback. These findings suggested that CK1delta inhibition might be effective in increasing the amplitude and synchronization of disrupted circadian oscillators. This was tested using arrhythmic SCN slices derived from Vipr2(-/-) mice, in which PF-670462 treatment transiently restored robust circadian rhythms of PER2::Luc bioluminescence. Moreover, in mice rendered behaviorally arrhythmic by the Vipr2(-/-) mutation or by constant light, daily treatment with PF-670462 elicited robust 24-h activity cycles that persisted throughout treatment. Accordingly, selective pharmacological targeting of the endogenous circadian regulator CK1delta offers an avenue for therapeutic modulation of perturbed circadian behavior.


Subject(s)
Casein Kinase 1 epsilon/antagonists & inhibitors , Casein Kinase Idelta/antagonists & inhibitors , Circadian Rhythm/physiology , Animals , Base Sequence , Casein Kinase 1 epsilon/physiology , Casein Kinase Idelta/deficiency , Casein Kinase Idelta/genetics , Casein Kinase Idelta/physiology , Circadian Rhythm/drug effects , Gene Knockdown Techniques , In Vitro Techniques , Mice , Mice, Knockout , Mice, Transgenic , Period Circadian Proteins/metabolism , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , RNA, Small Interfering/genetics , Receptors, Vasoactive Intestinal Peptide, Type II/deficiency , Receptors, Vasoactive Intestinal Peptide, Type II/genetics , Suprachiasmatic Nucleus/drug effects , Suprachiasmatic Nucleus/physiology
17.
J Biol Chem ; 285(22): 17209-17, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20212047

ABSTRACT

Stem cell biology offers advantages to investigators seeking to identify new therapeutic molecules. Specifically, stem cells are genetically stable, scalable for molecular screening, and function in cellular assays for drug efficacy and safety. A key hurdle for drug discoverers of central nervous system disease is a lack of high quality neuronal cells. In the central nervous system, alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA) subtype glutamate receptors mediate the vast majority of excitatory neurotransmissions. Embryonic stem (ES) cell protocols were developed to differentiate into neuronal subtypes that express AMPA receptors and were pharmacologically responsive to standard compounds for AMPA potentiation. Therefore, we hypothesized that stem cell-derived neurons should be predictive in high-throughput screens (HTSs). Here, we describe a murine ES cell-based HTS of a 2.4 x 10(6) compound library, the identification of novel chemical "hits" for AMPA potentiation, structure function relationship of compounds and receptors, and validation of chemical leads in secondary assays using human ES cell-derived neurons. This reporting of murine ES cell derivatives being formatted to deliver HTS of greater than 10(6) compounds for a specific drug target conclusively demonstrates a new application for stem cells in drug discovery. In the future new molecular entities may be screened directly in human ES or induced pluripotent stem cell derivatives.


Subject(s)
Embryonic Stem Cells/cytology , Neurons/metabolism , Receptors, AMPA/chemistry , Receptors, Glutamate/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Animals , Chemistry, Pharmaceutical/methods , Drug Design , Drug Evaluation, Preclinical , Fluorometry/methods , Humans , Immunohistochemistry/methods , Mice , Models, Biological , Mutation , Technology, Pharmaceutical/methods
18.
Assay Drug Dev Technol ; 6(1): 95-103, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18315498

ABSTRACT

The pathway for synthesis of the peptidoglycan precursor UDP-N-acetylmuramyl pentapeptide is essential in Gram-positive and Gram-negative bacteria. This pathway has been exploited in the recent past to identify potential new antibiotics as inhibitors of one or more of the Mur enzymes. In the present study, a high-throughput screen was employed to identify potential inhibitors of the Escherichia coli MurC (UDP-N-acetylmuramic acid:L-alanine ligase), the first of four paralogous amino acid-adding enzymes. Inhibition of ATP consumed during the MurC reaction, using an adaptation of a kinase assay format, identified a number of potential inhibitory chemotypes. After nonspecific inhibition testing and chemical attractiveness were assessed, C-1 emerged as a compound for further characterization. The inhibition of MurC by this compound was confirmed in both a kinetic-coupled enzyme assay and a direct nuclear magnetic resonance product detection assay. C-1 was found to be a low micromolar inhibitor of the E. coli MurC reaction, with preferential inhibition by one of two enantiomeric forms. Experiments indicated that it was a competitive inhibitor of ATP binding to the MurC enzyme. Further work with MurC enzymes from several bacterial sources revealed that while the compound was equally effective at inhibiting MurC from genera (Proteus mirabilis and Klebsiella pneumoniae) closely related to E. coli, MurC enzymes from more distant Gram-negative species such as Haemophilus influenzae, Acinetobacter baylyi, and Pseudomonas aeruginosa were not inhibited.


Subject(s)
Anti-Bacterial Agents , Enzyme Inhibitors/pharmacology , Peptide Synthases/antagonists & inhibitors , Peptidoglycan/biosynthesis , Carrier Proteins/biosynthesis , Carrier Proteins/genetics , DNA Primers , Drug Evaluation, Preclinical , Escherichia coli/drug effects , Escherichia coli/enzymology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Magnetic Resonance Spectroscopy , Maltose-Binding Proteins , Microbial Sensitivity Tests , Proteus mirabilis/drug effects , Proteus mirabilis/enzymology , Receptors, Purinergic P2/drug effects , Stereoisomerism , Structure-Activity Relationship
19.
J Biol Chem ; 280(12): 11704-12, 2005 Mar 25.
Article in English | MEDLINE | ID: mdl-15634672

ABSTRACT

The protein product of an essential gene of unknown function from Streptococcus pneumoniae was expressed and purified for screening in the ThermoFluor affinity screening assay. This assay can detect ligand binding to proteins of unknown function. The recombinant protein was found to be in a dimeric, native-like folded state and to unfold cooperatively. ThermoFluor was used to screen the protein against a library of 3000 compounds that were specifically selected to provide information about possible biological functions. The results of this screen identified pyridoxal phosphate and pyridoxamine phosphate as equilibrium binding ligands (K(d) approximately 50 pM, K(d) approximately 2.5 microM, respectively), consistent with an enzymatic cofactor function. Several nucleotides and nucleotide sugars were also identified as ligands of this protein. Sequence comparison with two enzymes of known structure but relatively low overall sequence homology established that several key residues directly involved in pyridoxal phosphate binding were strictly conserved. Screening a collection of generic drugs and natural products identified the antifungal compound canescin A as an irreversible covalent modifier of the enzyme. Our investigation of this protein indicates that its probable biological role is that of a nucleoside diphospho-keto-sugar aminotransferase, although the preferred keto-sugar substrate remains unknown. These experiments demonstrate the utility of a generic affinity-based ligand binding technology in decrypting possible biological functions of a protein, an approach that is both independent of and complementary to existing genomic and proteomic technologies.


Subject(s)
Bacterial Proteins/physiology , Genes, Essential/physiology , Nucleoside Diphosphate Sugars/metabolism , Streptococcus pneumoniae/genetics , Transaminases/physiology , Amino Acid Sequence , Benzopyrans/metabolism , Dimerization , Furans/metabolism , Ligands , Molecular Sequence Data , Pyridoxal Phosphate/metabolism , Pyridoxamine/metabolism , Streptococcus pneumoniae/enzymology
20.
Anal Biochem ; 314(2): 243-52, 2003 Mar 15.
Article in English | MEDLINE | ID: mdl-12654311

ABSTRACT

Assays for two enzymes from Escherichia coli were developed and validated as antibacterial inhibitor screens. The MraY and MurG enzymes were overexpressed and purified as the membrane fraction or to homogeneity, respectively. The MurG enzyme was expressed with a six-histidine tag using an optimized minimal-medium protocol for subsequent purification. Although traditional assays were established, the enzymes were also assayed via a 96-well membrane plate assay and a 384-well scintillation proximity-based assay developed herein. These assays afford a more economical and high-throughput evaluation of inhibitors. A mureidomycin inhibitor mix was used as a control for the assay development and screen validation. Several inhibitors resulting from a high-throughput screen were found and evaluated for potential therapeutic use.


Subject(s)
Bacterial Outer Membrane Proteins , Bacterial Proteins/metabolism , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli/enzymology , N-Acetylglucosaminyltransferases/metabolism , Transferases/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Cell Wall/metabolism , Dose-Response Relationship, Drug , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/pharmacology , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli Proteins/metabolism , Inhibitory Concentration 50 , Molecular Structure , Molecular Weight , N-Acetylglucosaminyltransferases/antagonists & inhibitors , Nucleosides/pharmacology , Time Factors , Transferases/antagonists & inhibitors , Transferases (Other Substituted Phosphate Groups)
SELECTION OF CITATIONS
SEARCH DETAIL
...