Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
BMC Immunol ; 25(1): 21, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637733

ABSTRACT

Helminth-derived proteins have immunomodulatory properties, influencing the host's immune response as an adaptive strategy for helminth survival. Helminth-derived proteins modulate the immune response by inducing anti-inflammatory cytokines, promoting regulatory T-cell development, and ultimately favouring a Th2-biased immune response. This systematic review focused on helminth-derived proteins and explored their impact on reducing inflammatory responses in mouse models of colitis. A systematic search across Medline, EMBASE, Web of Science, and Cochrane Library identified fourteen relevant studies. These studies reported immunomodulatory changes, including increased production of anti-inflammatory cells and cytokines. In mouse models of colitis treated with on helminth-derived proteins, significant improvements in pathological parameters such as body weight, colon length, and microscopic inflammatory scores were observed compared to control groups. Moreover, helminth-derived proteins can enhance the function of Tregs and alleviate the severity of inflammatory conditions. The findings underscore the pivotal role of helminth-derived proteins in immunomodulation, specifically in the axis of cytokine secretion and immune cell polarization. The findings offer new opportunities for treating chronic inflammatory conditions such Crohn's disease.


Subject(s)
Colitis , Helminth Proteins , Animals , Mice , Colitis/therapy , Cytokines/metabolism , Disease Models, Animal , Helminth Proteins/therapeutic use , Helminths , Immune System/metabolism , Immunologic Factors
2.
Antib Ther ; 7(1): 53-66, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38371953

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and the Middle East respiratory syndrome coronavirus (MERS-CoV) are highly pathogenic human coronaviruses (CoVs). Anti-CoVs mAbs and vaccines may be effective, but the emergence of neutralization escape variants is inevitable. Angiotensin-converting enzyme 2 and dipeptidyl peptidase 4 enzyme are the getaway receptors for SARS-CoV-2 and MERS-CoV, respectively. Thus, we reformatted these receptors as Fc-fusion decoy receptors. Then, we tested them in parallel with anti-SARS-CoV (ab1-IgG) and anti-MERS-CoV (M336-IgG) mAbs against several variants using pseudovirus neutralization assay. The generated Fc-based decoy receptors exhibited a strong inhibitory effect against all pseudotyped CoVs. Results showed that although mAbs can be effective antiviral drugs, they might rapidly lose their efficacy against highly mutated viruses. We suggest that receptor traps can be engineered as Fc-fusion proteins for highly mutating viruses with known entry receptors, for a faster and effective therapeutic response even against virus harboring antibodies escape mutations.

3.
PeerJ ; 11: e16273, 2023.
Article in English | MEDLINE | ID: mdl-37901472

ABSTRACT

Head lice (Pediculus humanus capitis) are a major global concern, and there is growing evidence of an increase in head lice prevalence among Saudi schoolchildren. The purpose of this study is to investigate the prevalence of an insecticidal resistance mutation in head lice collected from schoolchildren. A polymerase chain reaction (PCR) was used to amplify a segment of the voltage-gated sodium channel gene subunit to assess the prevalence and distribution of the kdr T917I mutation in head lice. Subsequently, the restriction fragment length polymorphism (RFLP) patterns revealed two genotypic forms: homozygous-susceptible (SS) and homozygous-resistant (RR). The results showed that 17 (37.80%) of the 45 samples were SS, whereas 28 (62.2%) were RR and T917I and L920F point mutations were found in the nucleotide and amino acid sequences of RR. Compared to other nations, the frequency of permethrin resistance mutation in the head louse population in Saudi Arabia was low. This study provides the first evidence of permethrin resistance mutation in human head lice in Saudi Arabia. The findings of this study will highlight the rising incidence of the kdr mutation in head lice in Saudi Arabia.


Subject(s)
Insecticides , Lice Infestations , Pediculus , Animals , Humans , Child , Permethrin/pharmacology , Pediculus/genetics , Saudi Arabia/epidemiology , Insecticides/pharmacology , Prevalence , Lice Infestations/epidemiology , Mutation/genetics , Students
4.
Molecules ; 28(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37764365

ABSTRACT

Frequent consumption of fruits and vegetables in the daily diet may alleviate the risk of developing chronic diseases. Daucus carota L. (carrot), Beta vulgaris L. (beetroot) Phyllanthus emblica L. (amla), and Lycopersicon esculentum M (tomatoes) are traditionally consumed functional foods that contain a high concentration of antioxidants, ascorbic acid, polyphenols, and numerous phytochemicals. This study assessed how three distinct preparation methods affect the phenolic, flavonoid, carotenoid, and ascorbic acid contents, antioxidant level, and cytotoxicity of the combined fruit extract. The fruit samples were taken in the ratio of carrot (6): beetroot (2): tomato (1.5): amla (0.5) and processed into a lyophilized slurry (LS) extract, lyophilized juice (LJ) extract, and hot-air oven-dried (HAO) extract samples. The sample extracts were assessed for their phytoconstituent concentrations and antioxidant and cytotoxic potential. The total phenolic content in LS, LJ, and HAO extracts was 171.20 ± 0.02, 120.73 ± 0.02, and 72.05 ± 0.01 mg gallic acid equivalent/100 g, respectively and the total flavonoid content was 23.635 ± 0.003, 20.754 ± 0.005, and 18.635 ± 0.005 mg quercetin equivalent/100 g, respectively. Similarly, total ascorbic acid content, carotenoids, and antioxidant potential were higher in the LS and LJ extracts than in HAO. Overall, the LS extract had a substantially higher concentration of phytochemicals and antioxidants, as well as higher cytotoxic potential, compared to the LJ and HAO extracts. The LS extract was tested in the MKN-45 human gastric cancer cell line to demonstrate its effective antioxidant potential and cytotoxicity. Hence, lyophilization (freezing) based techniques are more effective than heat-based techniques in preserving the phytoconstituents and their antioxidant and cytotoxic potential.


Subject(s)
Beta vulgaris , Daucus carota , Phyllanthus emblica , Solanum lycopersicum , Stomach Neoplasms , Humans , Antioxidants/analysis , Phyllanthus emblica/chemistry , Phyllanthus emblica/metabolism , Daucus carota/metabolism , Beta vulgaris/metabolism , Stomach Neoplasms/drug therapy , Plant Extracts/pharmacology , Plant Extracts/analysis , Ascorbic Acid/analysis , Phenols/pharmacology , Phenols/analysis , Flavonoids/pharmacology , Flavonoids/analysis , Carotenoids/pharmacology , Carotenoids/analysis , Phytochemicals/pharmacology , Phytochemicals/analysis , Fruit/chemistry
5.
One Health ; 17: 100601, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37520847

ABSTRACT

High seroprevalence rates of several phleboviruses have been reported in domestic animals and humans in sandfly-infested regions. Sandfly Fever Sicilian virus (SFSV) and Toscana virus (TOSV) are two of these viruses commonly transmitted by Phlebotomus sandflies. While SFSV can cause rapidly resolving mild febrile illness, TOSV could involve the central nervous system (CNS), causing diseases ranging from aseptic meningitis to meningoencephalitis. Sandfly-associated phleboviruses have not been investigated before in Saudi Arabia and are potential causes of infection given the prevalence of sandflies in the country. Here, we investigated the seroprevalence of SFSV and TOSV in the western region of Saudi Arabia in samples collected from blood donors, livestock animals, and animal handlers. An overall seroprevalence of 9.4% and 0.8% was found in humans for SFSV and TOSV, respectively. Seropositivity was significantly higher in non-Saudis compared to Saudis and increased significantly with age especially for SFSV. The highest seropositivity rate was among samples collected from animal handlers. Specifically, in blood donors, 6.4% and 0.7% tested positive for SFSV and TOSV nAbs, respectively. Animal handlers showed higher seroprevalence rates of 16% and 1% for anti-SFSV and anti-TOSV nAbs, respectively, suggesting that contact with livestock animals could be a risk factor. Indeed, sera from livestock animals showed seropositivity of 53.3% and 4.4% in cows, 27.5% and 7.8% in sheep, 2.2% and 0.0% in goats, and 10.0% and 2.3% in camels for SFSV and TOSV, respectively. Together, these results suggest that both SFSV and TOSV are circulating in the western region of Saudi Arabia in humans and livestock animals, albeit at different rates, and that age and contact with livestock animals could represent risk factors for infection with these viruses.

6.
Artif Cells Nanomed Biotechnol ; 51(1): 361-370, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37524306

ABSTRACT

BACKGROUND: Curcumin has been used in the treatment of several diseases; however, its low pharmacologic profile reduces its therapeutic use. Towards improving its biological activity, nanoformulations have emerged. Thus, we aimed to determine whether curcumin nanoparticles (Cur-NPs) coated with PEG/chitosan improve the treatment of liver cancer (LC) cells and underpin the molecular mechanisms underlying their anti-cancer activity. METHODS: Cur-NPs were synthesised in the form of Cur-PLGA-PEG/chitosan NPs. The effect of Cur-NPs was assessed in HepG2 and Huh 7 LC cells and THLE-2 normal liver cells. RESULTS: The size of synthesised Cur-NPS was determined in the standard range of 141.2 ± 47.5 nm. Compared to THLE-2 cells, LC cells treated with Cur-NPs exerted cytotoxicity at 6.25 µg/mL after 48h. Treatment of HepG-2 cells with 2.5 µg/mL of Cur-NPs inhibited cell migration and this inhibition was augmented at 10 µg/mL (p < 0.001). Treatment of chicken embryo with 5 µg/mL Cur-NPs reduced angiogenesis (p < 0.001) of 4-day-old embryos. The nanoformulation upregulated Bax and p53 and downregulated Bcl-2 in a concentration-dependent manner and subsequently induce apoptosis in HepG-2 cells. CONCLUSION: Treatment of LC cells with Cur-NPs decreased cell proliferation, migration, and angiogenesis, and induced cell death by promoting the proapoptotic pathway.


Curcumin nanoparticles (Cur-NPs) increase the anticancer efficiency of Curcumin against liver cancer cells.Cur-NPs induce apoptotic cell death of Liver cancer cells.Cur-NPs have ant-angiogenesis and metastasis effect.


Subject(s)
Chitosan , Curcumin , Liver Neoplasms , Nanoparticles , Chick Embryo , Animals , Curcumin/pharmacology , Curcumin/therapeutic use , Cell Line, Tumor , Chitosan/pharmacology , Apoptosis , Liver Neoplasms/drug therapy
7.
PeerJ ; 11: e15024, 2023.
Article in English | MEDLINE | ID: mdl-37065688

ABSTRACT

Misdiagnosing suspected COVID-19 individuals could largely contribute to the viruses transmission, therefore, making an accurate diagnosis of infected subjects vital in minimizing and containing the disease. Although RT-PCR is the standard method in detecting COVID-19, it is associated with some limitations, including possible false negative results. Therefore, serological testing has been suggested as a complement assay to RT-PCR to support the diagnosis of acute infections. In this study, 15 out of 639 unvaccinated healthcare workers (HCWs) were tested negative for COVID-19 by RT-PCR and were found seropositive for SARS-CoV-2 nucleocapsid protein-specific IgM and IgG antibodies. These participants underwent additional confirmatory RT-PCR and SARS-CoV-2 spike-specific ELISA tests. Of the 15 individuals, nine participants were found negative by second RT-PCR but seropositive for anti-spike IgM and IgG antibodies and neutralizing antibodies confirming their acute infection. At the time of collection, these nine individuals were in close contact with COVID-19-confirmed patients, with 77.7% reporting COVID-19-related symptoms. These results indicate that including serological tests in the current testing profile can provide better outcomes and help contain the spread of the virus by increasing diagnostic accuracy to prevent future outbreaks rapidly.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Reverse Transcriptase Polymerase Chain Reaction , Immunoglobulin G/analysis , Immunoglobulin M/analysis , COVID-19 Testing
8.
Malar J ; 22(1): 53, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36782234

ABSTRACT

BACKGROUND: Livelihood activities and human movements participate in the epidemiology of vector-borne diseases and influence malaria risk in elimination settings. In Saudi Arabia, where malaria transmission intensity varies geographically, it is vital to understand the components driving transmission within specific areas. In addition, shared social, behavioural, and occupational characteristics within communities may provoke the risk of malaria infection. This study aims to understand the relationship between human mobility, livelihood activities, and the risk of malaria infection in the border region of Jazan to facilitate further strategic malaria interventions. In addition, the study will complement and reinforce the existing efforts to eliminate malaria on the Saudi and Yemen border by providing a deeper understanding of human movement and livelihood activities. METHODS: An unmatched case-control study was conducted. A total of 261 participants were recruited for the study, including 81 cases of confirmed malaria through rapid diagnostic tests (RDTs) and microscopy and 180 controls in the Baish Governorate in Jazan Provinces, Saudi Arabia. Individuals who received malaria tests were interviewed regarding their livelihood activities and recent movement (travel history). A questionnaire was administered, and the data was captured electronically. STATA software version 16 was used to analyse the data. Bivariate and multivariate analyses were conducted to determine if engaging in agricultural activities such as farming and animal husbandry, recent travel history outside of the home village within the last 30 days and participating in spiritual gatherings were related to malaria infection status. RESULTS: A logistical regression model was used to investigate components associated with malaria infection. After adjusting several confounding factors, individuals who reported travelling away from their home village in the last 30 days OR 11.5 (95% CI 4.43-29.9), and those who attended a seasonal night spiritual gathering OR 3.04 (95% CI 1.10-8.42), involved in animal husbandry OR 2.52 (95% CI 1.10-5.82), and identified as male OR 4.57 (95% CI 1.43-14.7), were more likely to test positive for malaria infection. CONCLUSION: Human movement and livelihood activities, especially at nighttime, should be considered malaria risk factors in malaria elimination settings, mainly when the targeted area is limited to a confined borderland area.


Subject(s)
Malaria , Animals , Humans , Male , Case-Control Studies , Malaria/prevention & control , Risk Factors , Travel , Animal Husbandry
9.
Antibiotics (Basel) ; 11(11)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36358239

ABSTRACT

Salmonella enterica is a Gram-negative orofecal transmitted pathogen that causes a wide diversity of local and systemic illnesses. Salmonella enterica utilizes several interplayed systems to regulate its invasion and pathogenesis: namely, quorum sensing (QS) and type three secretion system (T3SS). In addition, S. enterica could sense the adrenergic hormones in the surroundings that enhance its virulence. The current study aimed to evaluate the ability of α-adrenoreceptor antagonist prazosin to mitigate the virulence of S. enterica serovar Typhimurium. The prazosin effect on biofilm formation and the expression of sdiA, qseC, qseE, and T3SS-type II encoding genes was evaluated. Furthermore, the prazosin intracellular replication inside macrophage and anti-virulence activity was evaluated in vivo against S. typhimurium. The current finding showed a marked prazosin ability to compete on SdiA and QseC and downregulate their encoding genes. Prazosin significantly downregulated the virulence factors encoding genes and diminished the biofilm formation, intracellular replication inside macrophages, and in vivo protected mice. To sum up, prazosin showed significant inhibitory activities against QS, T3SS, and bacterial espionage, which documents its considered anti-virulence activities.

10.
Microorganisms ; 10(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36296252

ABSTRACT

The targeting of bacterial virulence is proposed as a promising approach to overcoming the bacterial resistance development to antibiotics. Salmonella enterica is one of the most important gut pathogens that cause a wide diversity of local and systemic illnesses. The Salmonella virulence is controlled by interplayed systems namely Quorum sensing (QS) and type three secretion system (T3SS). Furthermore, the Salmonella spy on the host cell via sensing the adrenergic hormones enhancing its virulence. The current study explores the possible anti-virulence activities of ß-adrenoreceptor blocker atenolol against S. enterica serovar Typhimurium in vitro, in silico, and in vivo. The present findings revealed a significant atenolol ability to diminish the S. typhimurium biofilm formation, invasion into HeLa cells, and intracellular replication inside macrophages. Atenolol significantly downregulated the encoding genes of the T3SS-type II, QS receptor Lux analogs sdiA, and norepinephrine membranal sensors qseC and qseE. Moreover, atenolol significantly protected mice against S. typhimurium. For testing the possible mechanisms for atenolol anti-virulence activities, an in silico molecular docking study was conducted to assess the atenolol binding ability to QS receptor SdiA and norepinephrine membranal sensors QseC. Atenolol showed the ability to compete on the S. typhimurium targets. In conclusion, atenolol is a promising anti-virulence candidate to alleviate the S. typhimurium pathogenesis by targeting its QS and T3SS systems besides diminishing the eavesdropping on the host cells.

11.
Biology (Basel) ; 11(9)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36138828

ABSTRACT

Quorum sensing (QS) controls the production of several bacterial virulence factors. There is accumulative evidence to support that targeting QS can ensure a significant diminishing of bacterial virulence. Lessening bacterial virulence has been approved as an efficient strategy to overcome the development of antimicrobial resistance. The current study aimed to assess the anti-QS and anti-virulence activities of α-adrenoreceptor prazosin against three virulent Gram-negative bacteria Pseudomonades aeruginosa, Proteus mirabilis, and Serratia marcescens. The evaluation of anti-QS was carried out on a series of in vitro experiments, while the anti-virulence activities of prazosin were tested in an in vivo animal model. The prazosin anti-QS activity was assessed on the production of QS-controlled Chromobacterium violaceum pigment violacein and the expression of QS-encoding genes in P. aeruginosa. In vitro tests were performed to evaluate the prazosin effects on biofilm formation and production of extracellular enzymes by P. aeruginosa, P. mirabilis, and S. marcescens. A protective assay was conducted to evaluate the in vivo anti-virulence activity of prazosin against P. aeruginosa, P. mirabilis, and S. marcescens. Moreover, precise in silico molecular docking was performed to test the prazosin affinity to different QS receptors. The results revealed that prazosin significantly decreased the production of violacein and the virulent enzymes, protease and hemolysins, in the tested strains. Prazosin significantly diminished biofilm formation in vitro and bacterial virulence in vivo. The prazosin anti-QS activity was proven by its downregulation of QS-encoding genes and its obvious binding affinity to QS receptors. In conclusion, prazosin could be considered an efficient anti-virulence agent to be used as an adjuvant to antibiotics, however, it requires further pharmacological evaluations prior to clinical application.

12.
Genes (Basel) ; 13(8)2022 07 25.
Article in English | MEDLINE | ID: mdl-35893061

ABSTRACT

Multiple sclerosis (MS) is a severe immune-mediated neurological disease characterized by neuroinflammation, demyelination, and axonal degeneration in the central nervous system (CNS). This is frequently linked to motor abnormalities and cognitive impairments. The pathophysiological hallmarks of MS include inflammatory demyelination, axonal injury, white matter degeneration, and the development of CNS lesions that result in severe neuronal degeneration. Several studies suggested downregulation of nuclear factor erythroid-2-related factor-2 (Nrf2)/Heme oxygenase-1 (HO-1) signaling is a causative factor for MS pathogenesis. Acetyl-11-keto-ß-boswellic acid (AKBA) is an active pentacyclictriterpenoid obtained from Boswellia serrata, possessing antioxidant and anti-inflammatory properties. The present study explores the protective potential of AKBA on behavioral, molecular, neurochemical, and gross pathological abnormalitiesandhistopathological alterations by H&E and LFB staining techniques in an experimental model of multiple sclerosis, emphasizing the increase inNrf2/HO-1 levels in the brain. Moreover, we also examine the effect of AKBA on the intensity of myelin basic protein (MBP) in CSF and rat brain homogenate. Specific apoptotic markers (Bcl-2, Bax, andcaspase-3) were also estimated in rat brain homogenate. Neuro behavioralabnormalities in rats were examined using an actophotometer, rotarod test, beam crossing task (BCT),and Morris water maze (MWM). AKBA 50 mg/kg and 100 mg/kg were given orally from day 8 to 35 to alleviate MS symptoms in the EB-injected rats. Furthermore, cellular, molecular, neurotransmitter, neuroinflammatory cytokine, and oxidative stress markers in rat whole brain homogenate, blood plasma, and cerebral spinal fluid were investigated. This study shows that AKBA upregulates the level of antioxidant proteins such as Nrf2 and HO-1 in the rat brain. AKBA restores altered neurochemical levels, potentially preventing gross pathological abnormalities during MS progression.


Subject(s)
Multiple Sclerosis , NF-E2-Related Factor 2 , Animals , Antioxidants/pharmacology , Ethidium , Heme Oxygenase-1/genetics , Models, Theoretical , Multiple Sclerosis/drug therapy , Multiple Sclerosis/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Neuroprotection , Rats , Triterpenes
13.
Cureus ; 14(3): e23691, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35510030

ABSTRACT

BACKGROUND: The World Health Organization declared coronavirus disease 2019 (COVID-19) responsible for a catastrophic global pandemic. The complexity of COVID-19 is centred on the unpredictable course of the disease, which can rapidly develop from patients being asymptomatic to having life-threatening symptoms. The unpredictable disease severity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been a major problem facing the healthcare system during the pandemic. Identifying the laboratory biomarkers would help predict SARS-CoV-2 pathogenicity. This study focused on the previous literature regarding three laboratory biomarker profiles: haematological, inflammatory, and biochemical biomarkers. METHODS: A retrospective study of COVID-19 patients was conducted between May 2020 and September 2020 to determine the predictors of hospitalization (severity) in COVID-19 patients. Patients were divided into two groups: those admitted to an intensive care unit (ICU, severe) and those admitted to a non-ICU (stable). Patients' data were obtained from their medical records at Al Noor Specialist Hospital and East Arafat Hospital in Saudi Arabia. RESULTS: A total of 487 patients with COVID-19, including 304 males and 183 females, were investigated in this study. A total of 217 patients were admitted to the ICU. Patients admitted to the ICU had a higher prevalence of chronic comorbidities than non-ICU patients. D-dimer, white blood cells (WBC), neutrophils, ferritin, C-reactive protein (CRP), lactate dehydrogenase (LDH), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were more elevated in patients admitted to the ICU compared to non-ICU patients. CONCLUSION: Chronic comorbidities are a significant predictor for admission to the ICU. Moreover, tests for D-dimer, WBC, neutrophils, lymphocytes, CRP, LDH, and ALT could be used to predict patients' admission to the ICU.

14.
MAbs ; 14(1): 2057832, 2022.
Article in English | MEDLINE | ID: mdl-35380919

ABSTRACT

Anti-SARS-CoV-2 monoclonal antibodies and vaccines have shown improvement in lowering viral burden and hospitalization. However, emerging SARS-CoV-2 variants contain neutralizing antibody-escape mutations. Therefore, several reports have suggested the administration of recombinant angiotensin-converting enzyme 2 (rACE2) as a soluble receptor trap to block SARS-CoV-2 infection and limit viral escape potential. Several strategies have been implemented to enhance the efficacy of rACE2 as a therapeutic agent. Fc fusions have been used to improve pharmacokinetics and boost the affinity and avidity of ACE2 decoys for the virus spike protein. Furthermore, the intrinsic catalytic activity of ACE2 can be eliminated by introducing point mutations on the catalytic site of ACE2 to obtain an exclusive antiviral activity. This review summarizes different evolution platforms that have been used to enhance ACE2-Fc (i.e., immunoadhesins) as potential therapeutics for the current pandemic or future outbreaks of SARS-associated betacoronaviruses.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Humans , Protein Binding , Receptors, Fc/metabolism , Spike Glycoprotein, Coronavirus/genetics
15.
Front Immunol ; 12: 666223, 2021.
Article in English | MEDLINE | ID: mdl-34046036

ABSTRACT

BACKGROUND: SARS, MERS, and COVID-19 share similar characteristics. For instance, the genetic homology of SARS-CoV-2 compared to SARS-CoV and MERS-CoV is 80% and 50%, respectively, which may cause similar clinical features. Moreover, uncontrolled release of proinflammatory mediators (also called a cytokine storm) by activated immune cells in SARS, MERS, and COVID-19 patients leads to severe phenotype development. AIM: This systematic review and meta-analysis aimed to evaluate the inflammatory cytokine profile associated with three strains of severe human coronavirus diseases (MERS-CoV, SARS-CoV, and SARS-CoV-2). METHOD: The PubMed, Embase, and Cochrane Library databases were searched for studies published until July 2020. Randomized and observational studies reporting the inflammatory cytokines associated with severe and non-severe human coronavirus diseases, including MERS-CoV, SARS-CoV, and SARS-CoV-2, were included. Two reviewers independently screened articles, extracted data, and assessed the quality of the included studies. Meta-analysis was performed using a random-effects model with a 95% confidence interval to estimate the pooled mean of inflammatory biomarkers. RESULTS: A high level of circulating IL-6 could be associated with the severity of infection of the three coronavirus strains. TNF, IL-10, and IL-8 are associated with the severity of COVID-19. Increased circulating levels of CXCL10/IP10 and CCL2/MCP-1 might also be related to the severity of MERS. CONCLUSION: This study suggests that the immune response and immunopathology in the three severe human coronavirus strains are somewhat similar. The findings highlight that nearly all studies reporting severe cases of SARS, MERS, and COVID-19 have been associated with elevated levels of IL-6. This could be used as a potential therapeutic target to improve patients' outcomes in severe cases. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration 94 number: CRD42020209931.


Subject(s)
Coronavirus Infections/immunology , Coronavirus/physiology , Cytokine Release Syndrome/immunology , Inflammation/immunology , Animals , Blood Circulation , Chemokines/metabolism , Cytokines/metabolism , Humans , Randomized Controlled Trials as Topic
16.
Front Immunol ; 11: 576748, 2020.
Article in English | MEDLINE | ID: mdl-33133094

ABSTRACT

Parasitic helminths infect over one-fourth of the human population resulting in significant morbidity, and in some cases, death in endemic countries. Despite mass drug administration (MDA) to school-aged children and other control measures, helminth infections are spreading into new areas. Thus, there is a strong rationale for developing anthelminthic vaccines as cost-effective, long-term immunological control strategies, which, unlike MDA, are not haunted by the threat of emerging drug-resistant helminths nor limited by reinfection risk. Advances in vaccinology, immunology, and immunomics include the development of new tools that improve the safety, immunogenicity, and efficacy of vaccines; and some of these tools have been used in the development of helminth vaccines. The development of anthelminthic vaccines is fraught with difficulty. Multiple lifecycle stages exist each presenting stage-specific antigens. Further, helminth parasites are notorious for their ability to dampen down and regulate host immunity. One of the first significant challenges in developing any vaccine is identifying suitable candidate protective antigens. This review explores our current knowledge in lead antigen identification and reports on recent pre-clinical and clinical trials in the context of the soil-transmitted helminths Trichuris, the hookworms and Ascaris. Ultimately, a multivalent anthelminthic vaccine could become an essential tool for achieving the medium-to long-term goal of controlling, or even eliminating helminth infections.


Subject(s)
Ascariasis/immunology , Helminthiasis/immunology , Population , Trichuriasis/immunology , Vaccines/immunology , Animals , Child , Humans , Immunity , Soil/parasitology
17.
Parasite Epidemiol Control ; 11: e00187, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33102823

ABSTRACT

SARS-CoV-2 has spread throughout the world and become the cause of the infectious coronavirus disease 2019 (COVID-19). As low- and middle-income countries shift increasingly to focus on identifying and treating COVID-19, questions are emerging about the impact this shift in focus will have on ongoing efforts to control other infectious diseases, such as malaria. This review discusses how the spread of SARS-CoV-2 in low- and middle-income countries might impact these efforts, focusing in particular on the effects of co-infection and the use of antimalarial drugs used to treat malaria as therapeutic interventions for COVID-19.

18.
PLoS Pathog ; 16(3): e1008243, 2020 03.
Article in English | MEDLINE | ID: mdl-32203551

ABSTRACT

Trichuris trichiura is a parasite that infects 500 million people worldwide, leading to colitis, growth retardation and Trichuris dysentery syndrome. There are no licensed vaccines available to prevent Trichuris infection and current treatments are of limited efficacy. Trichuris infections are linked to poverty, reducing children's educational performance and the economic productivity of adults. We employed a systematic, multi-stage process to identify a candidate vaccine against trichuriasis based on the incorporation of selected T-cell epitopes into virus-like particles. We conducted a systematic review to identify the most appropriate in silico prediction tools to predict histocompatibility complex class II (MHC-II) molecule T-cell epitopes. These tools were used to identify candidate MHC-II epitopes from predicted ORFs in the Trichuris genome, selected using inclusion and exclusion criteria. Selected epitopes were incorporated into Hepatitis B core antigen virus-like particles (VLPs). Bone marrow-derived dendritic cells and bone marrow-derived macrophages responded in vitro to VLPs irrespective of whether the VLP also included T-cell epitopes. The VLPs were internalized and co-localized in the antigen presenting cell lysosomes. Upon challenge infection, mice vaccinated with the VLPs+T-cell epitopes showed a significantly reduced worm burden, and mounted Trichuris-specific IgM and IgG2c antibody responses. The protection of mice by VLPs+T-cell epitopes was characterised by the production of mesenteric lymph node (MLN)-derived Th2 cytokines and goblet cell hyperplasia. Collectively our data establishes that a combination of in silico genome-based CD4+ T-cell epitope prediction, combined with VLP delivery, offers a promising pipeline for the development of an effective, safe and affordable helminth vaccine.


Subject(s)
Epitopes, T-Lymphocyte/immunology , Trichuriasis/prevention & control , Trichuris/immunology , Vaccines/immunology , Animals , Antibodies, Helminth/immunology , Computer Simulation , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/administration & dosage , Epitopes, T-Lymphocyte/genetics , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Humans , Immunogenicity, Vaccine , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Trichuriasis/immunology , Trichuriasis/parasitology , Trichuris/genetics , Vaccines/administration & dosage , Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...