Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Noncoding RNA ; 10(1)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38250806

ABSTRACT

The analysis of small RNA sequencing data across a range of biofluids is a significant research area, given the diversity of RNA types that hold potential diagnostic, prognostic, and predictive value. The intricate task of segregating the complex mixture of small RNAs from both human and other species, including bacteria, fungi, and viruses, poses one of the most formidable challenges in the analysis of small RNA sequencing data, currently lacking satisfactory solutions. This study introduces sRNAflow, a user-friendly bioinformatic tool with a web interface designed for the analysis of small RNAs obtained from biological fluids. Tailored to the unique requirements of such samples, the proposed pipeline addresses various challenges, including filtering potential RNAs from reagents and environment, classifying small RNA types, managing small RNA annotation overlap, conducting differential expression assays, analysing isomiRs, and presenting an approach to identify the sources of small RNAs within samples. sRNAflow also encompasses an alternative alignment-free analysis of RNA-seq data, featuring clustering and initial RNA source identification using BLAST. This comprehensive approach facilitates meaningful comparisons of results between different analytical methods.

2.
Front Mol Biosci ; 10: 1279854, 2023.
Article in English | MEDLINE | ID: mdl-38099195

ABSTRACT

Introduction: Prostate cancer (PCa), one of the most prevalent malignancies affecting men worldwide, presents significant challenges in terms of early detection, risk stratification, and active surveillance. In recent years, liquid biopsies have emerged as a promising non-invasive approach to complement or even replace traditional tissue biopsies. Extracellular vesicles (EVs), nanosized membranous structures released by various cells into body fluids, have gained substantial attention as a source of cancer biomarkers due to their ability to encapsulate and transport a wide range of biological molecules, including RNA. In this study, we aimed to validate 15 potential RNA biomarkers, identified in a previous EV RNA sequencing study, using droplet digital PCR. Methods: The candidate biomarkers were tested in plasma and urinary EVs collected before and after radical prostatectomy from 30 PCa patients and their diagnostic potential was evaluated in a test cohort consisting of 20 benign prostate hyperplasia (BPH) and 20 PCa patients' plasma and urinary EVs. Next, the results were validated in an independent cohort of plasma EVs from 31 PCa and 31 BPH patients. Results: We found that the levels of NKX3-1 (p = 0.0008) in plasma EVs, and tRF-Phe-GAA-3b (p < 0.0001) tRF-Lys-CTT-5c (p < 0.0327), piR-28004 (p = 0.0081) and miR-375-3p (p < 0.0001) in urinary EVs significantly decreased after radical prostatectomy suggesting that the main tissue source of these RNAs is prostate and/or PCa. Two mRNA biomarkers-GLO1 and NKX3-1 showed promising diagnostic potential in distinguishing between PCa and BPH with AUC of 0.68 and 0.82, respectively, in the test cohort and AUC of 0.73 and 0.65, respectively, in the validation cohort, when tested in plasma EVs. Combining these markers in a biomarker model yielded AUC of 0.85 and 0.71 in the test and validation cohorts, respectively. Although the PSA levels in the blood could not distinguish PCa from BPH in our cohort, adding PSA to the mRNA biomarker model increased AUC from 0.71 to 0.76. Conclusion: This study identified two novel EV-enclosed RNA biomarkers-NKX3-1 and GLO1-for the detection of PCa, and highlights the complementary nature of GLO1, NKX3-1 and PSA as combined biomarkers in liquid biopsies of PCa.

3.
Cancers (Basel) ; 15(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686605

ABSTRACT

Over the past decade, extracellular vesicles (EVs) have emerged as a promising source of cancer-derived RNAs for liquid biopsies. However, blood contains a pool of heterogeneous EVs released by a variety of cell types, making the identification of cancer RNA biomarkers challenging. Here, we performed deep sequencing of plasma EV RNA cargo in 32 patients with locally advanced breast cancer (BC) at diagnosis and 7 days after breast surgery and in 30 cancer-free healthy controls (HCs). To identify BC-derived RNA biomarkers, we searched for RNAs that had higher levels in BC EVs at the time of diagnosis compared with HCs and decreased after surgery. Data analysis showed that the fractions of miRNAs, snRNAs, snoRNAs, and tRFs were increased, but the fraction of lncRNAs was decreased in BC EVs as compared to HCs. BC-derived biomarker candidates were identified across various RNA biotypes. Considered individually, they had very high specificity but moderate sensitivity for the detection of BC, whereas a biomarker model composed of eight RNAs: SNORD3H, SNORD1C, SNORA74D, miR-224-5p, piR-32949, lnc-IFT-122-2, lnc-C9orf50-4, and lnc-FAM122C-3 was able to distinguish BC from HC EVs with an AUC of 0.902 (95% CI = 0.872-0.931, p = 3.4 × 10-9) in leave-one-out cross-validation. Furthermore, a number of RNA biomarkers were correlated with the ER and HER2 expression and additional biomarker models were created to predict hormone receptor and HER2 status. Overall, this study demonstrated that the RNA composition of plasma EVs is altered in BC patients and that they contain cancer-derived RNA biomarkers that can be used for BC detection and monitoring using liquid biopsies.

4.
Int J Mol Sci ; 24(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37511419

ABSTRACT

The increasing frequency of general and particularly male cancer coupled with the reduction in male fertility seen worldwide motivated us to seek a potential evolutionary link between these two phenomena, concerning the reproductive transcriptional modules observed in cancer and the expression of cancer-testis antigens (CTA). The phylostratigraphy analysis of the human genome allowed us to link the early evolutionary origin of cancer via the reproductive life cycles of the unicellulars and early multicellulars, potentially driving soma-germ transition, female meiosis, and the parthenogenesis of polyploid giant cancer cells (PGCCs), with the expansion of the CTA multi-families, very late during their evolution. CTA adaptation was aided by retrovirus domestication in the unstable genomes of mammals, for protecting male fertility in stress conditions, particularly that of humans, as compensation for the energy consumption of a large complex brain which also exploited retrotransposition. We found that the early and late evolutionary branches of human cancer are united by the immunity-proto-placental network, which evolved in the Cambrian and shares stress regulators with the finely-tuned sex determination system. We further propose that social stress and endocrine disruption caused by environmental pollution with organic materials, which alter sex determination in male foetuses and further spermatogenesis in adults, bias the development of PGCC-parthenogenetic cancer by default.


Subject(s)
Neoplasms , Testis , Pregnancy , Animals , Humans , Male , Female , Testis/metabolism , Placenta , Spermatogenesis/genetics , Reproduction , Neoplasms/genetics , Neoplasms/metabolism , Mammals , Polyploidy , Fertility/genetics
5.
Environ Microbiol Rep ; 15(5): 383-391, 2023 10.
Article in English | MEDLINE | ID: mdl-37057308

ABSTRACT

In the grave environment, microorganisms are major ecological participants in the successional decomposition of vertebrates and could infiltrate the skeleton/skeletal material during taphonomic processes. The diversity of archaeological skeleton-associated microbial assemblages and the impact of various factors are poorly understood. This study aimed to evaluate the taxonomic microbial composition of archaeological human bone and teeth samples from the 7th to 11th centuries AD from two burial sites in Latvia. Samples were analysed by a shotgun metagenomics-based approach. The results showed a strong presence of the environmental DNA in the samples, and variability in microbial community structure between individual samples. Differences in microbial composition were observed between bone and tooth samples, as well as between different burial sites. Furthermore, the presence of endogenous ancient DNA (aDNA) in tooth samples was detected. Overall, compositions of microbial communities associated with archaeological human remains in Latvia dated 7-11th century AD were influenced by the sample type and burial location. These findings indicate that, while the content of historical DNA in archaeological samples is low, the comparison of archaeological skeleton-associated microbial assemblages across time and space, along with aDNA damage profile analysis, is important and could help to reveal putative ancient microorganisms.


Subject(s)
Microbiota , Animals , Humans , Latvia , Microbiota/genetics , DNA , Burial
6.
Arch Microbiol ; 205(4): 116, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36920536

ABSTRACT

The global population is getting older due to a combination of longer life expectancy and declining birth rates. Growing evidence suggests that the oral microbiota composition and distribution may have a profound effect on how well we age. The purpose of this study was to investigate age-related oral microbiome variations of supragingival plaque and buccal mucosa samples in the general population in Latvia. Our results indicated significant difference between supragingival plaque bacterial profiles of three age groups (20-40; 40-60; 60 + years). Within supragingival plaque samples, age group 20-40 showed the highest bacterial diversity with a decline during the 40-60 age period and uprise again after the age of 60. Among other differences, the important oral commensal Neisseria had declined after the age of 40. Additionally, prevalence of two well-documented opportunistic pathogens Streptococcus anginosus and Gemella sanguinis gradually rose with age within our samples. Furthermore, supragingival plaque and buccal mucosa samples significantly differed in overall bacterial composition.


Subject(s)
Microbiota , Oral Health , Humans , Bacteria/genetics , Aging , Cluster Analysis , RNA, Ribosomal, 16S
7.
Curr Issues Mol Biol ; 45(3): 1794-1809, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36975485

ABSTRACT

Mitochondria are involved in many vital functions in living cells, including the synthesis of ATP by oxidative phosphorylation (OXPHOS) and regulation of nuclear gene expression through retrograde signaling. Leigh syndrome is a heterogeneous neurological disorder resulting from an isolated complex I deficiency that causes damage to mitochondrial energy production. The pathogenic mitochondrial DNA (mtDNA) variant m.13513G>A has been associated with Leigh syndrome. The present study investigated the effects of this mtDNA variant on the OXPHOS system and cell retrograde signaling. Transmitochondrial cytoplasmic hybrid (cybrid) cell lines harboring 50% and 70% of the m.13513G>A variant were generated and tested along with wild-type (WT) cells. The functionality of the OXPHOS system was evaluated by spectrophotometric assessment of enzyme activity and high-resolution respirometry. Nuclear gene expression was investigated by RNA sequencing and droplet digital PCR. Increasing levels of heteroplasmy were associated with reduced OXPHOS system complex I, IV, and I + III activities, and high-resolution respirometry also showed a complex I defect. Profound changes in transcription levels of nuclear genes were observed in the cell lines harboring the pathogenic mtDNA variant, indicating the physiological processes associated with defective mitochondria.

8.
Front Mol Biosci ; 10: 980433, 2023.
Article in English | MEDLINE | ID: mdl-36818049

ABSTRACT

Introduction: Extracellular vesicles (EVs) have emerged as a very attractive source of cancer- derived RNA biomarkers for the early detection, prognosis and monitoring of various cancers, including prostate cancer (PC). However, biofluids contain a mixture of EVs released from a variety of tissues and the fraction of total EVs that are derived from PC tissue is not known. Moreover, the optimal biofluid-plasma or urine-that is more suitable for the detection of EV- enclosed RNA biomarkers is not yet clear. Methodology: In the current study, we performed RNA sequencing analysis of plasma and urinary EVs collected before and after radical prostatectomy, and matched tumor and normal prostate tissues of 10 patients with prostate cancer. Results and Discussion: The most abundant RNA biotypes in EVs were miRNA, piRNA, tRNA, lncRNA, rRNA and mRNA. To identify putative cancer-derived RNA biomarkers, we searched for RNAs that were overexpressed in tumor as compared to normal tissues, present in the pre-operation EVs and decreased in the post-operation EVs in each RNA biotype. The levels of 63 mRNAs, 3 lncRNAs, 2 miRNAs and 1 piRNA were significantly increased in the tumors and decreased in the post-operation urinary EVs, thus suggesting that these RNAs mainly originate from PC tissue. No such RNA biomarkers were identified in plasma EVs. This suggests that the fraction of PC-derived EVs in urine is larger than in plasma and allows the detection and tracking of PC-derived RNAs.

9.
Front Oncol ; 12: 1005812, 2022.
Article in English | MEDLINE | ID: mdl-36387168

ABSTRACT

Extracellular vesicles (EVs) are g7aining increased attention as carriers of cancer-derived molecules for liquid biopsies. Here, we studied the dynamics of EV levels in the plasma of breast cancer (BC) patients undergoing neoadjuvant chemotherapy (NAC) and explored the relevance of their RNA cargo for the prediction of patients' response to the therapy. EVs were isolated from serial blood samples collected at the time of diagnosis, at the end of NAC, and 7 days, 6, and 12 months after the surgery from 32 patients with locally advanced BC, and 30 cancer-free healthy controls (HCs) and quantified by nanoparticle tracking analysis. The pre-treatment levels of EVs in BC patients were higher than in HCs, significantly increased during the NAC and surgery, and decreased to the levels found in HCs 6 months after surgery, thus showing that a substantial fraction of plasma EVs in BC patients are produced due to the disease processes and treatment. RNA sequencing analysis revealed that the changes in the EV levels were associated with the alterations in the proportions of various RNA biotypes in EVs. To search for RNA biomarkers that predict response to the NAC, patients were dichotomized as responders and non-responders based on Miller-Payne grades and differential expression analyses were carried out between responders and non-responders, and HCs. This resulted in the identification of 6 miRNAs, 4 lncRNAs, and 1 snoRNA that had significantly higher levels in EVs from non-responders than responders at the time of diagnosis and throughout the NAC, and significantly lower levels in HCs, thus representing biomarkers for the prediction of response to NAC at the time of diagnosis. In addition, we found 14 RNAs representing piRNA, miRNA, lncRNA, snoRNA, and snRNA biotypes that were induced by NAC in non-responders and 2 snoRNAs and 1 piRNA that were induced by NAC in patients with early disease progression, thus warranting further functional studies on their role in chemoresistance and metastasis.

10.
BMC Cancer ; 22(1): 1055, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36224527

ABSTRACT

BACKGROUND: Increasing evidence suggests that cancer-derived extracellular vesicles (EVs) alter the phenotype and functions of fibroblasts and trigger the reprogramming of normal fibroblasts into cancer-associated fibroblasts (CAFs). Here, we for the first time studied the effects of urinary EVs from PC patients and healthy males on the transcriptional landscape of prostate CAFs and normal foreskin fibroblasts. METHODS: Patient-derived prostate fibroblast primary cultures PCF-54 and PCF-55 were established from two specimens of PC tissues. EVs were isolated from urine samples of 3 patients with PC and 2 healthy males and used for the treatment of prostate fibroblast primary cultures and normal foreskin fibroblasts. The EV-treated fibroblasts were subjected to RNA sequencing analysis. RESULTS: RNA sequencing analysis showed that the fibroblast cultures differed significantly in their response to urinary EVs. The transcriptional response of foreskin fibroblasts to the urinary EVs isolated from PC patients and healthy controls was very similar and mostly related to the normal functions of fibroblasts. On the contrary, PCF-54 cells responded very differently - EVs from PC patients elicited transcriptional changes related to the regulation of the cell division and chromosome segregation, whereas EVs from healthy males affected mitochondrial respiration. In PCF-55 cells, EVs from both, PC-patients and controls induced the expression of a number of chemokines such as CCL2, CCL13, CXCL1, CXCL8, whereas pathways related to regulation of apoptotic signaling and production of cell adhesion molecules were triggered specifically by EVs from PC patients. CONCLUSION: This study demonstrates that urinary EVs from PC patients and healthy controls elicit distinct transcriptional responses in prostate CAFs and supports the idea that EVs contribute to the generation of functional heterogeneity of CAFs. Moreover, this study suggests that the changes in the gene expression pattern in EV recipient cells might serve as a novel type of functional cancer biomarkers.


Subject(s)
Cancer-Associated Fibroblasts , Extracellular Vesicles , Prostatic Neoplasms , Biomarkers, Tumor/metabolism , Cancer-Associated Fibroblasts/metabolism , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Fibroblasts/metabolism , Humans , Male , Prostatic Neoplasms/metabolism , Transcriptome
11.
Hum Mutat ; 43(10): 1347-1353, 2022 10.
Article in English | MEDLINE | ID: mdl-35731190

ABSTRACT

The investigated intronic CAPN3 variant NM_000070.3:c.1746-20C>G occurs in the Central and Eastern Europe with a frequency of >1% and there are conflicting interpretations on its pathogenicity. We collected data on 14 patients carrying the CAPN3 c.1746-20C>G variant in trans position with another CAPN3 pathogenic/likely pathogenic variant. The patients compound heterozygous for the CAPN3 c.1746-20C>G variant presented a phenotype consistent with calpainopathy of mild/medium severity. This variant is most frequent in the North/West regions of Russia and may originate from that area. Molecular studies revealed that different splicing isoforms are produced in the muscle. We hypothesize that c.1746-20C>G is a hypomorphic variant with a reduction of RNA and protein expression and only individuals having a higher ratio of abnormal isoforms are affected. Reclassification of the CAPN3 variant c.1746-20C>G from variant with a conflicting interpretation of pathogenicity to hypomorphic variant explains many unidentified cases of limb girdle muscular dystrophy R1 calpain 3-related in Eastern and Central Europe.


Subject(s)
Calpain , Muscle Proteins , Muscular Dystrophies, Limb-Girdle , Calpain/genetics , Humans , Muscle Proteins/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Mutation , RNA Splicing
12.
J Transl Med ; 20(1): 176, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35428263

ABSTRACT

BACKGROUND: Antibody response to SARS-CoV-2 is a valuable biomarker for the assessment of the spread of the virus in a population and evaluation of the vaccine candidates. Recent data suggest that antibody levels also may have a prognostic significance in COVID-19. Most of the serological studies so far rely on testing antibodies against spike (S) or nucleocapsid (N) protein, however antibodies can be directed against other structural and nonstructural proteins of the virus, whereas their frequency, biological and clinical significance is unknown. METHODS: A novel antigen array comprising 30 SARS-CoV-2 antigens or their fragments was developed and used to examine IgG, IgA, IgE and IgM responses to SARS-CoV-2 in sera from 103 patients with COVID-19 including 34 patients for whom sequential samples were available, and 20 pre-pandemic healthy controls. RESULTS: Antibody responses to various antigens are highly correlated and the frequencies and peak levels of antibodies are higher in patients with severe/moderate disease than in those with mild disease. This finding supports the idea that antibodies against SARS-CoV-2 may exacerbate the severity of the disease via antibody-dependent enhancement. Moreover, early IgG and IgA responses to full length S protein may be used as an additional biomarker for the identification of patients who are at risk of developing severe disease. Importantly, this is the first study reporting that SARS-CoV-2 elicits IgE responses and their serum levels positively correlate with the severity of the disease thus suggesting a link between high levels of antibodies and mast cell activation. CONCLUSIONS: This is the first study assessing the prevalence and dynamics IgG, IgA, IgE and IgM responses to multiple SARS-CoV-2 antigens simultaneously. Results provide important insights into the pathogenesis of COVID-19 and have implications in planning and interpreting antibody-based epidemiological studies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , Biomarkers , Humans , Immunoglobulin A , Immunoglobulin E , Immunoglobulin G , Immunoglobulin M , Severity of Illness Index
13.
Cells ; 11(5)2022 03 03.
Article in English | MEDLINE | ID: mdl-35269502

ABSTRACT

Here, we review the role of the circadian clock (CC) in the resistance of cancer cells to genotoxic treatments in relation to whole-genome duplication (WGD) and telomere-length regulation. The CC drives the normal cell cycle, tissue differentiation, and reciprocally regulates telomere elongation. However, it is deregulated in embryonic stem cells (ESCs), the early embryo, and cancer. Here, we review the DNA damage response of cancer cells and a similar impact on the cell cycle to that found in ESCs­overcoming G1/S, adapting DNA damage checkpoints, tolerating DNA damage, coupling telomere erosion to accelerated cell senescence, and favouring transition by mitotic slippage into the ploidy cycle (reversible polyploidy). Polyploidy decelerates the CC. We report an intriguing positive correlation between cancer WGD and the deregulation of the CC assessed by bioinformatics on 11 primary cancer datasets (rho = 0.83; p < 0.01). As previously shown, the cancer cells undergoing mitotic slippage cast off telomere fragments with TERT, restore the telomeres by ALT-recombination, and return their depolyploidised offspring to telomerase-dependent regulation. By reversing this polyploidy and the CC "death loop", the mitotic cycle and Hayflick limit count are thus again renewed. Our review and proposed mechanism support a life-cycle concept of cancer and highlight the perspective of cancer treatment by differentiation.


Subject(s)
Circadian Clocks , Neoplasms , Circadian Clocks/genetics , DNA Damage/genetics , Humans , Mitosis/genetics , Neoplasms/genetics , Polyploidy , Telomere
14.
Cells ; 10(7)2021 06 23.
Article in English | MEDLINE | ID: mdl-34201566

ABSTRACT

Open systems can only exist by self-organization as pulsing structures exchanging matter and energy with the outer world. This review is an attempt to reveal the organizational principles of the heterochromatin supra-intra-chromosomal network in terms of nonlinear thermodynamics. The accessibility of the linear information of the genetic code is regulated by constitutive heterochromatin (CHR) creating the positional information in a system of coordinates. These features include scale-free splitting-fusing of CHR with the boundary constraints of the nucleolus and nuclear envelope. The analysis of both the literature and our own data suggests a radial-concentric network as the main structural organization principle of CHR regulating transcriptional pulsing. The dynamic CHR network is likely created together with nucleolus-associated chromatin domains, while the alveoli of this network, including springy splicing speckles, are the pulsing transcription hubs. CHR contributes to this regulation due to the silencing position variegation effect, stickiness, and flexible rigidity determined by the positioning of nucleosomes. The whole system acts in concert with the elastic nuclear actomyosin network which also emerges by self-organization during the transcriptional pulsing process. We hypothesize that the the transcriptional pulsing, in turn, adjusts its frequency/amplitudes specified by topologically associating domains to the replication timing code that determines epigenetic differentiation memory.


Subject(s)
Heterochromatin/metabolism , Models, Biological , Actomyosin/metabolism , Animals , Cell Line, Tumor , Cell Nucleolus/metabolism , Chickens , DNA Replication Timing , Embryonic Development/genetics , Gene Expression Regulation , Humans , Organ Specificity/genetics , Rats
15.
Genes (Basel) ; 12(2)2021 02 22.
Article in English | MEDLINE | ID: mdl-33671794

ABSTRACT

Recent advantages in paleomicrobiology have provided an opportunity to investigate the composition of ancient microbial ecologies. Here, using metagenome analysis, we investigated the microbial profiles of historic dental calculus retrieved from archaeological human remains from postmedieval Latvia dated 16-17th century AD and examined the associations of oral taxa and microbial diversity with specific characteristics. We evaluated the preservation of human oral microbiome patterns in historic samples and compared the microbial composition of historic dental calculus, modern human dental plaque, modern human dental calculus samples and burial soil microbiota. Overall, the results showed that the majority of microbial DNA in historic dental calculus originated from the oral microbiome with little impact of the burial environment. Good preservation of ancient DNA in historical dental calculus samples has provided reliable insight into the composition of the oral microbiome of postmedieval Latvian individuals. The relative stability of the classifiable oral microbiome composition was observed. Significant differences between the microbiome profiles of dental calculus and dental plaque samples were identified, suggesting microbial adaptation to a specific human body environment.


Subject(s)
DNA, Bacterial/genetics , Dental Calculus/microbiology , Dental Plaque/microbiology , Microbiota/genetics , Adolescent , Adult , Archaeology , Body Remains , Burial , Child , DNA, Ancient/analysis , Dental Calculus/genetics , Dental Plaque/genetics , Female , Humans , Latvia/epidemiology , Male , Metagenome/genetics , Middle Aged , Soil Microbiology , Young Adult
16.
Biophys J ; 120(4): 711-724, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33453273

ABSTRACT

Finding out how cells prepare for fate change during differentiation commitment was our task. To address whether the constitutive pericentromere-associated domains (PADs) may be involved, we used a model system with known transcriptome data, MCF-7 breast cancer cells treated with the ErbB3 ligand heregulin (HRG), which induces differentiation and is used in the therapy of cancer. PAD-repressive heterochromatin (H3K9me3), centromere-associated-protein-specific, and active euchromatin (H3K4me3) antibodies, real-time PCR, acridine orange DNA structural test (AOT), and microscopic image analysis were applied. We found a two-step DNA unfolding after 15-20 and 60 min of HRG treatment, respectively. This behavior was consistent with biphasic activation of the early response genes (c-fos - fosL1/myc) and the timing of two transcriptome avalanches reported in the literature. In control, the average number of PADs negatively correlated with their size by scale-free distribution, and centromere clustering in turn correlated with PAD size, both indicating that PADs may create and modulate a suprachromosomal network by fusing and splitting a constant proportion of the constitutive heterochromatin. By 15 min of HRG treatment, the bursting unraveling of PADs from the nucleolus boundary occurred, coinciding with the first step of H3K4me3 chromatin unfolding, confirmed by AOT. The second step after 60 min of HRG treatment was associated with transcription of long noncoding RNA from PADs and peaking of fosL1/c-myc response. We hypothesize that the bursting of PAD clusters under a critical silencing threshold pushes the first transcription avalanche, whereas the destruction of the PAD network enables genome rewiring needed for differentiation repatterning, mediated by early response bivalent genes.


Subject(s)
Breast Neoplasms , Neuregulin-1 , Breast Neoplasms/genetics , Centromere , Heterochromatin , Humans
17.
Front Mol Biosci ; 8: 784080, 2021.
Article in English | MEDLINE | ID: mdl-35087866

ABSTRACT

Increasing evidence suggests that regular physical exercise not only reduces the risk of cancer but also improves functional capacity, treatment efficacy and disease outcome in cancer patients. At least partially, these effects are mediated by the secretome of the tissues responding to exercise. The secreted molecules can be released in a carrier-free form or enclosed into extracellular vesicles (EVs). Several recent studies have shown that EVs are actively released into circulation during physical exercise. Here, we for the first time investigated the effects of exercise-induced EVs on the progression of cancer in an F344 rat model of metastatic prostate cancer. Although we did not observe a consistent increase in the circulating EV levels, RNA sequencing analysis demonstrated substantial changes in the RNA content of EVs collected before and immediately after forced wheel running exercise as well as differences between EVs from runners at resting state and sedentary rats. The major RNA biotype in EVs was mRNA, followed by miRNA and rRNA. Molecular functions of differentially expressed RNAs reflected various physiological processes including protein folding, metabolism and regulation of immune responses triggered by the exercise in the parental cells. Intravenous administration of exercise-induced EVs into F344 rats with orthotopically injected syngeneic prostate cancer cells PLS10, demonstrated reduction of the primary tumor volume by 35% and possibly-attenuation of lung metastases. Hence, our data provide the first evidence that exercise-induced EVs may modulate tumor physiology and delay the progression of cancer.

18.
Genes (Basel) ; 10(8)2019 08 13.
Article in English | MEDLINE | ID: mdl-31412657

ABSTRACT

Triploidy in cancer is associated with poor prognosis, but its origins remain unclear. Here, we attempted to differentiate between random chromosomal and whole-genome origins of cancer triploidy. In silico meta-analysis was performed on 15 male malignant and five benign tumor cohorts (2928 karyotypes) extracted from the Mitelman Database, comparing their ploidy and combinations of sex chromosomes. A distinct near-triploid fraction was observed in all malignant tumor types, and was especially high in seminoma. For all tumor types, X-chromosome doubling, predominantly observed as XXY, correlated strongly with the near-triploid state (r ≈ 0.9, p < 0.001), negatively correlated with near-diploidy, and did not correlate with near-tetraploidy. A smaller near-triploid component with a doubled X-chromosome was also present in three of the five benign tumor types, especially notable in colon adenoma. Principal component analysis revealed a non-random correlation structure shaping the X-chromosome disomy distribution across all tumor types. We suggest that doubling of the maternal genome followed by pedogamic fusion with a paternal genome (a possible mimic of the fertilization aberration, 69, XXY digyny) associated with meiotic reprogramming may be responsible for the observed rearrangements of genome complements leading to cancer triploidy. The relatively frequent loss of the Y-chromosome results as a secondary factor from chromosome instability.


Subject(s)
Abnormal Karyotype , Chromosomes, Human, X/genetics , Genomic Instability , Neoplasms/genetics , Triploidy , Chromosomes, Human, Y/genetics , DNA, Neoplasm/genetics , Humans , Male , Neoplasms/pathology
19.
Genes (Basel) ; 10(7)2019 07 19.
Article in English | MEDLINE | ID: mdl-31331093

ABSTRACT

Near-triploid human tumors are frequently resistant to radio/chemotherapy through mechanisms that are unclear. We recently reported a tight association of male tumor triploidy with XXY karyotypes based on a meta-analysis of 15 tumor cohorts extracted from the Mitelman database. Here we provide a conceptual framework of the digyny-like origin of this karyotype based on the germline features of malignant tumors and adaptive capacity of digyny, which supports survival in adverse conditions. Studying how the recombinatorial reproduction via diploidy can be executed in primary cancer samples and HeLa cells after DNA damage, we report the first evidence that diploid and triploid cell sub-populations constitutively coexist and inter-change genomes via endoreduplicated polyploid cells generated through genotoxic challenge. We show that irradiated triploid HeLa cells can enter tripolar mitosis producing three diploid sub-subnuclei by segregation and pairwise fusions of whole genomes. Considering the upregulation of meiotic genes in tumors, we propose that the reconstructed diploid sub-cells can initiate pseudo-meiosis producing two "gametes" (diploid "maternal" and haploid "paternal") followed by digynic-like reconstitution of a triploid stemline that returns to mitotic cycling. This process ensures tumor survival and growth by (1) DNA repair and genetic variation, (2) protection against recessive lethal mutations using the third genome.


Subject(s)
Chromosomes, Human, X , Chromosomes, Human, Y , Karyotype , Neoplasms/genetics , Neoplastic Stem Cells , Triploidy , Germ Cells , HeLa Cells , Humans , Male , Meiosis , Models, Genetic , Neoplasms/pathology , Spindle Apparatus , Tumor Cells, Cultured
20.
Front Immunol ; 9: 2660, 2018.
Article in English | MEDLINE | ID: mdl-30515157

ABSTRACT

An important role for tumor infiltrating B lymphocytes (TIL-B) in the immune response to cancer is emerging; however, very little is known about the antigen specificity of antibodies produced in situ. The presence of IgA antibodies in the tumor microenvironment has been noted although their biological functions and clinical significance are unknown. This study used a 91-antigen microarray to examine the IgG and IgA autoantibody repertoires in breast cancer (BC). Tumor and adjacent breast tissue supernatants and plasma from BC patients together with normal breast tissue supernatants and plasma from healthy controls (patients undergoing mammary reduction and healthy blood donors) were analyzed to investigate relationships between autoantibodies and the clinical, histological and immunological features of tumors. Our data show that >84% of the BC samples tested contain autoantibodies to one or more antigens on the array, with ANKRD30BL, COPS4, and CTAG1B being most frequently reactive. Ex vivo TIL-B responses were uncoupled from systemic humoral responses in the majority of cases. A comparison of autoantibody frequencies in supernatants and plasma from patients and controls identified eight antigens that elicit BC-associated autoantibody responses. The overall prevalence of IgG and IgA autoantibodies was similar and while IgG and IgA responses were not linked they did correlate with distinct clinical, pathological and immunological features. Higher levels of ex vivo IgG responses to BC-associated antigens were associated with shorter recurrence-free survival (RFS), HER2 overexpression and lower tumor-infiltrating CD8+ T cell counts. Higher IgA levels were associated with estrogen and progesterone receptor-negative cancers but were not significantly associated with RFS. Furthermore, ex vivo IgA but not IgG autoantibodies reactive to BC-associated antigens were linked with germinal center and early memory B cell maturation and the presence of tertiary lymphoid structures suggesting that these TIL-B are activated in the tumor microenvironment. Overall, our results extend the current understanding of the antigen specificity, the biological and the clinical significance of IgG and IgA autoantibodies produced by BC TIL-B in situ.


Subject(s)
Antibody Specificity , Antigens, Neoplasm/immunology , Autoantibodies/immunology , B-Lymphocytes/immunology , Breast Neoplasms/immunology , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Adult , Aged , B-Lymphocytes/pathology , Breast Neoplasms/pathology , Female , Humans , Lymphocytes, Tumor-Infiltrating/pathology , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL