Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Heliyon ; 10(6): e27578, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38533053

ABSTRACT

Background: Insufficient remnant liver volume (RLV) after the resection of hepatic malignancy could lead to liver failure and mortality. Portal vein ligation (PVL) prior to hepatectomy is subsequently introduced to increase the remnant liver volume and improve the outcome of hepatic malignancy. IL-22 has previously been reported to promote liver regeneration, while facilitating tumor development in the liver via Steap4 upregulation. Here we performed PVL in mouse models to study the role of IL-22 in liver regeneration post-PVL. Methods: Liver weight and volume was measured via magnetic resonance imaging (MRI). Immunohistochemistry for Ki67 and hepatocyte growth factor (HGF) was performed. IL-22 was analyzed by flow cytometry and quantitative polymerase chain reaction (qPCR) was used for acquisition of Il-33, Steap4, Fga, Fgb and Cebpd. To analyze signaling pathways, mice with deletion of STAT3 and a neutralizing antibody for IL-22 were used. Results: The remnant liver weight and volume increased over time after PVL. Additionally, we found that liver regenerative molecules, including Ki67 and HGF, were significantly increased in remnant liver at day 3 post-PVL, as well as IL-22. Administration of IL-22 neutralizing antibody could reduce Ki67 expression after PVL. The upregulation of IL-22 after PVL was mainly derived from innate cells. IL-22 blockade resulted in lower levels of IL-33 and Steap4 in the remnant liver, which was also the case in mice with deletion of STAT3, the main downstream signaling molecule of IL-22, in hepatocytes. Conclusion: IL-22 promotes liver regeneration after PVL. Thus, a combination of IL-22 supplementation and Steap4 blockade could potentially be applied as a novel therapeutic approach to boost liver regeneration without facilitating tumor progression after PVL.

2.
STAR Protoc ; 5(1): 102811, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38236770

ABSTRACT

To investigate underlying mechanisms for cancer metastasis and promising therapies in animal models, spontaneous metastasis models can be used to recreate metastasis development. Here, we present three mouse models of spontaneous lung and/or liver metastasis induction. We describe steps for cancer cell preparation, mouse analgesia, and three injection techniques (subcutaneous, intracecal, and intramucosal). We then detail procedures for evaluating metastasis. Most of these models generate metastasis in a time span of 4 weeks in the majority of injected mice. For complete details on the use and execution of this protocol, please refer to Giannou et al.1.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Lung Neoplasms , Animals , Mice , Disease Models, Animal
3.
STAR Protoc ; 5(1): 102696, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38244200

ABSTRACT

Forced metastasis models, those in which the step of intravasation is bypassed, can be used to investigate the mechanisms underlying metastasis and evaluate potential therapeutic targets. Here, we present a protocol for using three forced models of lung and liver metastasis to generate metastasis within 3-4 weeks in approximately 99% of injected mice. We describe steps for cancer cell preparation, mouse analgesia and anesthesia; injecting through intrasplenic, intraportal, and intravenous techniques; and daily evaluation of metastasis. For complete details on the use and execution of this protocol, please refer to Giannou et al.1.


Subject(s)
Liver Neoplasms , Animals , Mice , Lung
4.
World J Pediatr ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38261172

ABSTRACT

BACKGROUND: Early-life respiratory infections and asthma are major health burdens during childhood. Markers predicting an increased risk for early-life respiratory diseases are sparse. Here, we identified the predictive value of ultrasound-monitored fetal lung growth for the risk of early-life respiratory infections and asthma. METHODS: Fetal lung size was serially assessed at standardized time points by transabdominal ultrasound in pregnant women participating in a pregnancy cohort. Correlations between fetal lung growth and respiratory infections in infancy or early-onset asthma at five years were examined. Machine-learning models relying on extreme gradient boosting regressor or classifier algorithms were developed to predict respiratory infection or asthma risk based on fetal lung growth. For model development and validation, study participants were randomly divided into a training and a testing group, respectively, by the employed algorithm. RESULTS: Enhanced fetal lung growth throughout pregnancy predicted a lower early-life respiratory infection risk. Male sex was associated with a higher risk for respiratory infections in infancy. Fetal lung growth could also predict the risk of asthma at five years of age. We designed three machine-learning models to predict the risk and number of infections in infancy as well as the risk of early-onset asthma. The models' R2 values were 0.92, 0.90 and 0.93, respectively, underscoring a high accuracy and agreement between the actual and predicted values. Influential variables included known risk factors and novel predictors, such as ultrasound-monitored fetal lung growth. CONCLUSION: Sonographic monitoring of fetal lung growth allows to predict the risk for early-life respiratory infections and asthma.

5.
J Hepatol ; 80(4): 634-644, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38160941

ABSTRACT

BACKGROUND & AIMS: The liver is one of the organs most commonly affected by metastasis. The presence of liver metastases has been reported to be responsible for an immunosuppressive microenvironment and diminished immunotherapy efficacy. Herein, we aimed to investigate the role of IL-10 in liver metastasis and to determine how its modulation could affect the efficacy of immunotherapy in vivo. METHODS: To induce spontaneous or forced liver metastasis in mice, murine cancer cells (MC38) or colon tumor organoids were injected into the cecum or the spleen, respectively. Mice with complete and cell type-specific deletion of IL-10 and IL-10 receptor alpha were used to identify the source and the target of IL-10 during metastasis formation. Programmed death ligand 1 (PD-L1)-deficient mice were used to test the role of this checkpoint. Flow cytometry was applied to characterize the regulation of PD-L1 by IL-10. RESULTS: We found that Il10-deficient mice and mice treated with IL-10 receptor alpha antibodies were protected against liver metastasis formation. Furthermore, by using IL-10 reporter mice, we demonstrated that Foxp3+ regulatory T cells (Tregs) were the major cellular source of IL-10 in liver metastatic sites. Accordingly, deletion of IL-10 in Tregs, but not in myeloid cells, led to reduced liver metastasis. Mechanistically, IL-10 acted on Tregs in an autocrine manner, thereby further amplifying IL-10 production. Furthermore, IL-10 acted on myeloid cells, i.e. monocytes, and induced the upregulation of the immune checkpoint protein PD-L1. Finally, the PD-L1/PD-1 axis attenuated CD8-dependent cytotoxicity against metastatic lesions. CONCLUSIONS: Treg-derived IL-10 upregulates PD-L1 expression in monocytes, which in turn reduces CD8+ T-cell infiltration and related antitumor immunity in the context of colorectal cancer-derived liver metastases. These findings provide the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastases. IMPACT AND IMPLICATIONS: Liver metastasis diminishes the effectiveness of immunotherapy and increases the mortality rate in patients with colorectal cancer. We investigated the role of IL-10 in liver metastasis formation and assessed its impact on the effectiveness of immunotherapy. Our data show that IL-10 is a pro-metastatic factor involved in liver metastasis formation and that it acts as a regulator of PD-L1. This provides the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastasis.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Animals , Humans , Mice , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Interleukin-10 , Liver Neoplasms/pathology , Receptors, Interleukin-10 , Tumor Microenvironment
6.
STAR Protoc ; 4(4): 102701, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37950863

ABSTRACT

The transplantation model provides the opportunity to assess the relevance of a molecule of interest for tumor cell extravasation by using a respective genetically modified donor animal. Here, we present a protocol for orthotopic single-lung transplantation in mice as a tool for lung metastasis studies. We describe steps for animal preparation, lung transplantation, and tumor cell injection. We then detail procedures for the direct comparison of tumor cell spreading between the genetically modified left lung and the naive right lung parenchyma. For complete details on the use and execution of this protocol, please refer to Giannou et al. (2023).1.


Subject(s)
Lung Neoplasms , Lung Transplantation , Transplants , Animals , Mice
7.
Oncoimmunology ; 12(1): 2269634, 2023.
Article in English | MEDLINE | ID: mdl-37876835

ABSTRACT

Metastasis is a cancer-related systemic disease and is responsible for the greatest mortality rate among cancer patients. Interestingly, the interaction between the immune system and cancer cells seems to play a key role in metastasis formation in the target organ. However, this complex network is only partially understood. We previously found that IL-22 produced by tissue resident iNKT17 cells promotes cancer cell extravasation, the early step of metastasis. Based on these data, we aimed here to decipher the role of IL-22 in the last step of metastasis formation. We found that IL-22 levels were increased in established metastatic sites in both human and mouse. We also found that Th22 cells were the key source of IL-22 in established metastasis sites, and that deletion of IL-22 in CD4+ T cells was protective in liver metastasis formation. Accordingly, the administration of a murine IL-22 neutralizing antibody in the establishment of metastasis formation significantly reduced the metastatic burden in a mouse model. Mechanistically, IL-22-producing Th22 cells promoted angiogenesis in established metastasis sites. In conclusion, our findings highlight that IL-22 is equally as important in contributing to metastasis formation at late metastatic stages, and thus, identify it as a novel therapeutic target in established metastasis.


Subject(s)
CD4-Positive T-Lymphocytes , Liver Neoplasms , Humans , Animals , Mice , Interleukins , Interleukin-22
8.
Front Oncol ; 13: 1170502, 2023.
Article in English | MEDLINE | ID: mdl-37324022

ABSTRACT

Background: The immune system plays a pivotal role in cancer progression. Interleukin 22 binding protein (IL-22BP), a natural antagonist of the cytokine interleukin 22 (IL-22) has been shown to control the progression of colorectal cancer (CRC). However, the role of IL-22BP in the process of metastasis formation remains unknown. Methods: We used two different murine in vivo metastasis models using the MC38 and LLC cancer cell lines and studied lung and liver metastasis formation after intracaecal or intrasplenic injection of cancer cells. Furthermore, IL22BP expression was measured in a clinical cohort of CRC patients and correlated with metastatic tumor stages. Results: Our data indicate that low levels of IL-22BP are associated with advanced (metastatic) tumor stages in colorectal cancer. Using two different murine in vivo models we show that IL-22BP indeed controls the progression of liver but not lung metastasis in mice. Conclusions: We here demonstrate a crucial role of IL-22BP in controlling metastasis progression. Thus, IL-22 might represent a future therapeutic target against the progression of metastatic CRC.

9.
Immunity ; 56(1): 125-142.e12, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36630911

ABSTRACT

During metastasis, cancer cells invade, intravasate, enter the circulation, extravasate, and colonize target organs. Here, we examined the role of interleukin (IL)-22 in metastasis. Immune cell-derived IL-22 acts on epithelial tissues, promoting regeneration and healing upon tissue damage, but it is also associated with malignancy. Il22-deficient mice and mice treated with an IL-22 antibody were protected from colon-cancer-derived liver and lung metastasis formation, while overexpression of IL-22 promoted metastasis. Mechanistically, IL-22 acted on endothelial cells, promoting endothelial permeability and cancer cell transmigration via induction of endothelial aminopeptidase N. Multi-parameter flow cytometry and single-cell sequencing of immune cells isolated during cancer cell extravasation into the liver revealed iNKT17 cells as source of IL-22. iNKT-cell-deficient mice exhibited reduced metastases, which was reversed by injection of wild type, but not Il22-deficient, invariant natural killer T (iNKT) cells. IL-22-producing iNKT cells promoting metastasis were tissue resident, as demonstrated by parabiosis. Thus, IL-22 may present a therapeutic target for prevention of metastasis.


Subject(s)
Interleukins , Liver Neoplasms , Natural Killer T-Cells , Animals , Mice , Endothelial Cells/metabolism , Interleukins/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Mice, Inbred C57BL , Natural Killer T-Cells/metabolism , Colorectal Neoplasms/metabolism , Interleukin-22
10.
J Clin Immunol ; 43(1): 46-56, 2023 01.
Article in English | MEDLINE | ID: mdl-36121535

ABSTRACT

Almost 2 years into the pandemic and with vaccination of children significantly lagging behind adults, long-term pediatric humoral immune responses to SARS-CoV-2 are understudied. The C19.CHILD Hamburg (COVID-19 Child Health Investigation of Latent Disease) Study is a prospective cohort study designed to identify and follow up children and their household contacts infected in the early 2020 first wave of SARS-CoV-2. We screened 6113 children < 18 years by nasopharyngeal swab-PCR in a low-incidence setting after general lockdown, from May 11 to June 30, 2020. A total of 4657 participants underwent antibody testing. Positive tests were followed up by repeated PCR and serological testing of all household contacts over 6 months. In total, the study identified 67 seropositive children (1.44%); the median time after infection at first presentation was 83 days post-symptom onset (PSO). Follow-up of household contacts showed less than 100% seroprevalence in most families, with higher seroprevalence in families with adult index cases compared to pediatric index cases (OR 1.79, P = 0.047). Most importantly, children showed sustained seroconversion up to 9 months PSO, and serum antibody concentrations persistently surpassed adult levels (ratio serum IgG spike children vs. adults 90 days PSO 1.75, P < 0.001; 180 days 1.38, P = 0.01; 270 days 1.54, P = 0.001). In a low-incidence setting, SARS-CoV-2 infection and humoral immune response present distinct patterns in children including higher antibody levels, and lower seroprevalence in families with pediatric index cases. Children show long-term SARS-CoV-2 antibody responses. These findings are relevant to novel variants with increased disease burden in children, as well as for the planning of age-appropriate vaccination strategies.


Subject(s)
Antibody Formation , COVID-19 , Adult , Humans , Child , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Prospective Studies , Seroepidemiologic Studies , Communicable Disease Control , Antibodies, Viral
11.
Cancers (Basel) ; 14(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36551508

ABSTRACT

Hepatocellular carcinoma (HCC) ranks among the five most common cancer entities worldwide and leads to hundred-thousands of deaths every year. Despite some groundbreaking therapeutical revelations during the last years, the overall prognosis remains poor. Although the immune system fights malignant transformations with a robust anti-tumor response, certain immune mediators have also been shown to promote cancer development. For example, interleukin (IL)-22 has been associated with HCC progression and worsened prognosis in multiple studies. However, the underlying mechanisms of the pathological role of IL-22-signaling as well as the role of its natural antagonist IL-22 binding protein (IL-22BP) in HCC remain elusive. Here, we corroborate the pathogenic role of IL-22 in HCC by taking advantage of two mouse models. Moreover, we observed a protective role of IL-22BP during liver carcinogenesis. While IL-22 was mainly produced by CD4+ T cells in HCC, IL-22BP was abundantly expressed by neutrophils during liver carcinogenesis. Hepatocytes could be identified as a major target of this pathological IL-22-signaling. Moreover, abrogation of IL-22 signaling in hepatocytes in IL22ra1flox/flox × AlbCre+ mice reduced STEAP4 expression-a known oncogene-in HCC in vivo. Likewise, STEAP4 expression correlated with IL22 levels in human HCC samples, but not in healthy liver specimens. In conclusion, these data encourage the development of therapeutical approaches that target the IL-22-IL-22BP axis in HCC.

12.
Semin Immunopathol ; 44(6): 827-854, 2022 11.
Article in English | MEDLINE | ID: mdl-36305904

ABSTRACT

The lung is a vital organ that incessantly faces external environmental challenges. Its homeostasis and unimpeded vital function are ensured by the respiratory epithelium working hand in hand with an intricate fine-tuned tissue-resident immune cell network. Lung tissue-resident immune cells span across the innate and adaptive immunity and protect from infectious agents but can also prove to be pathogenic if dysregulated. Here, we review the innate and adaptive immune cell subtypes comprising lung-resident immunity and discuss their ontogeny and role in distinct respiratory diseases. An improved understanding of the role of lung-resident immunity and how its function is dysregulated under pathological conditions can shed light on the pathogenesis of respiratory diseases.


Subject(s)
Immunity, Innate , Lung , Humans , Adaptive Immunity , Homeostasis
13.
Front Immunol ; 13: 867577, 2022.
Article in English | MEDLINE | ID: mdl-35911689

ABSTRACT

SARS-CoV-2 is still a major burden for global health despite effective vaccines. With the reduction of social distancing measures, infection rates are increasing in children, while data on the pediatric immune response to SARS-CoV-2 infection is still lacking. Although the typical disease course in children has been mild, emerging variants may present new challenges in this age group. Peripheral blood mononuclear cells (PBMC) from 51 convalescent children, 24 seronegative siblings from early 2020, and 51 unexposed controls were stimulated with SARS-CoV-2-derived peptide MegaPools from the ancestral and beta variants. Flow cytometric determination of activation-induced markers and secreted cytokines were used to quantify the CD4+ T cell response. The average time after infection was over 80 days. CD4+ T cell responses were detected in 61% of convalescent children and were markedly reduced in preschool children. Cross-reactive T cells for the SARS-CoV-2 beta variant were identified in 45% of cases after infection with an ancestral SARS-CoV-2 variant. The CD4+ T cell response was accompanied most predominantly by IFN-γ and Granzyme B secretion. An antiviral CD4+ T cell response was present in children after ancestral SARS-CoV-2 infection, which was reduced in the youngest age group. We detected significant cross-reactivity of CD4+ T cell responses to the more recently evolved immune-escaping beta variant. Our findings have epidemiologic relevance for children regarding novel viral variants of concern and vaccination efforts.


Subject(s)
COVID-19 , SARS-CoV-2 , CD4-Positive T-Lymphocytes , Child , Child, Preschool , Humans , Leukocytes, Mononuclear
14.
Nat Commun ; 13(1): 4571, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35931682

ABSTRACT

Life-long brain function and mental health are critically determined by developmental processes occurring before birth. During mammalian pregnancy, maternal cells are transferred to the fetus. They are referred to as maternal microchimeric cells (MMc). Among other organs, MMc seed into the fetal brain, where their function is unknown. Here, we show that, in the offspring's developing brain in mice, MMc express a unique signature of sensome markers, control microglia homeostasis and prevent excessive presynaptic elimination. Further, MMc facilitate the oscillatory entrainment of developing prefrontal-hippocampal circuits and support the maturation of behavioral abilities. Our findings highlight that MMc are not a mere placental leak out, but rather a functional mechanism that shapes optimal conditions for healthy brain function later in life.


Subject(s)
Chimerism , Maternal-Fetal Exchange , Animals , Female , Fetus , Mammals , Mice , Parturition , Placenta , Pregnancy
15.
Vaccine ; 40(11): 1563-1571, 2022 03 08.
Article in English | MEDLINE | ID: mdl-33431223

ABSTRACT

Neonatal passive immunity, derived from transplacental transfer of IgG antibodies from mother to fetus during pregnancy, can mitigate the risk for severe infections in the early postnatal period. Understanding the placenta as the gateway organ in this process, we aimed to evaluate the influence of specific factors modulating the transplacental IgG transfer rate (TPTR) in 141 mother/neonate pairs. We further evaluated the potential health advantage elicited by maternal IgG with regard to respiratory tract infections during infancy and early childhood. Data and biological samples collected within the prospective longitudinal pregnancy cohort study PRINCE (Prenatal Identification of Children's Health) were used for these analyses. We tested IgG antibody levels against seven pathogens (measles, mumps, rubella, tetanus, diphtheria, pertussis and influenza A) by ELISA and detected seropositivity in 72.6-100% of pregnant women and in 76.3-100% of their neonates, respectively. Cord blood IgG levels reached 137-160% of levels detected in maternal blood. Strikingly, assessment of TPTR for all seven antigens highlighted that TPTR strongly depends on individual placental function. Subsequent in-depth analysis of anti-influenza A IgG revealed a link between cord blood levels and uterine perfusion, measured by uterine artery pulsatility index. Moreover, higher cord blood anti-influenza A IgG levels were associated with a significantly reduced risk for respiratory tract infections during the first six months of life, indicating a high degree of cross-reactivity and possible pathogen-agnostic effects of anti-influenza A antibodies. Taken together, our data suggest that early life immunity is modulated by maternal IgG levels and individual placental features such as perfusion. Vaccination of pregnant women, i.e. against influenza, can increase neonatal antibody levels and hereby protect against early life respiratory infections. Consequently, specific guidelines should evolve in order to safeguard neonates born from pregnancies with poorer placental capacity for vertical transfer of protective antibodies.


Subject(s)
Placenta , Rubella , Antibodies, Bacterial , Antibodies, Viral , Child , Child, Preschool , Cohort Studies , Female , Humans , Immunity, Maternally-Acquired , Immunoglobulin G , Infant , Infant, Newborn , Pregnancy , Prospective Studies
16.
Sci Adv ; 7(33)2021 08.
Article in English | MEDLINE | ID: mdl-34389533

ABSTRACT

Malignant pleural effusion (MPE) results from the capacity of several human cancers to metastasize to the pleural cavity. No effective treatments are currently available, reflecting our insufficient understanding of the basic mechanisms leading to MPE progression. Here, we found that efferocytosis through the receptor tyrosine kinases AXL and MERTK led to the production of interleukin-10 (IL-10) by four distinct pleural cavity macrophage (Mφ) subpopulations characterized by different metabolic states and cell chemotaxis properties. In turn, IL-10 acts on dendritic cells (DCs) inducing the production of tissue inhibitor of metalloproteinases 1 (TIMP1). Genetic ablation of Axl and Mertk in Mφs or IL-10 receptor in DCs or Timp1 substantially reduced MPE progression. Our results delineate an inflammatory cascade-from the clearance of apoptotic cells by Mφs, to production of IL-10, to induction of TIMP1 in DCs-that facilitates MPE progression. This inflammatory cascade offers a series of therapeutic targets for MPE.

17.
Gastroenterology ; 159(4): 1417-1430.e3, 2020 10.
Article in English | MEDLINE | ID: mdl-32585307

ABSTRACT

BACKGROUND & AIMS: Unregulated activity of interleukin (IL) 22 promotes intestinal tumorigenesis in mice. IL22 binds the antagonist IL22 subunit alpha 2 (IL22RA2, also called IL22BP). We studied whether alterations in IL22BP contribute to colorectal carcinogenesis in humans and mice. METHODS: We obtained tumor and nontumor tissues from patients with colorectal cancer (CRC) and measured levels of cytokines by quantitative polymerase chain reaction, flow cytometry, and immunohistochemistry. We measured levels of Il22bp messenger RNA in colon tissues from wild-type, Tnf-/-, Lta-/-, and Ltb-/- mice. Mice were given azoxymethane and dextran sodium sulfate to induce colitis and associated cancer or intracecal injections of MC38 tumor cells. Some mice were given inhibitors of lymphotoxin beta receptor (LTBR). Intestine tissues were analyzed by single-cell sequencing to identify cell sources of lymphotoxin. We performed immunohistochemistry analysis of colon tissue microarrays from patients with CRC (1475 tissue cores, contained tumor and nontumor tissues) and correlated levels of IL22BP with patient survival times. RESULTS: Levels of IL22BP were decreased in human colorectal tumors, compared with nontumor tissues, and correlated with levels of lymphotoxin. LTBR signaling was required for expression of IL22BP in colon tissues of mice. Wild-type mice given LTBR inhibitors had an increased tumor burden in both models, but LTBR inhibitors did not increase tumor growth in Il22bp-/- mice. Lymphotoxin directly induced expression of IL22BP in cultured human monocyte-derived dendritic cells via activation of nuclear factor κB. Reduced levels of IL22BP in colorectal tumor tissues were associated with shorter survival times of patients with CRC. CONCLUSIONS: Lymphotoxin signaling regulates expression of IL22BP in colon; levels of IL22BP are reduced in human colorectal tumors, associated with shorter survival times. LTBR signaling regulates expression of IL22BP in colon tumors in mice and cultured human dendritic cells. Patients with colorectal tumors that express low levels of IL22BP might benefit from treatment with an IL22 antagonist.


Subject(s)
Colorectal Neoplasms/metabolism , Lymphotoxin-alpha/metabolism , Receptors, Interleukin/metabolism , Aged , Animals , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Disease Models, Animal , Female , Humans , Male , Mice , RNA, Messenger/metabolism , Receptors, Interleukin/genetics , Survival Rate
18.
J Allergy Clin Immunol ; 145(6): 1641-1654, 2020 06.
Article in English | MEDLINE | ID: mdl-32305348

ABSTRACT

BACKGROUND: Prenatal challenges such as maternal stress perception increase the risk and severity of asthma during childhood. However, insights into the trajectories and targets underlying the pathogenesis of prenatally triggered asthma are largely unknown. The developing lung and immune system may constitute such targets. OBJECTIVE: Here we have aimed to identify the differential sex-specific effects of prenatal challenges on lung function, immune response, and asthma severity in mice. METHODS: We generated bone marrow chimeric (BMC) mice harboring either prenatally stress-exposed lungs or a prenatally stress-exposed immune (hematopoietic) system and induced allergic asthma via ovalbumin. Next-generation sequencing (RNA sequencing) of lungs and assessment of airway epithelial barrier function in ovalbumin-sensitized control and prenatally stressed offspring was also performed. RESULTS: Profoundly enhanced airway hyperresponsiveness, inflammation, and fibrosis were exclusively present in female BMC mice with prenatally stress-exposed lungs. These effects were significantly perpetuated if both the lungs and the immune system had been exposed to prenatal stress. A prenatally stress-exposed immune system alone did not suffice to increase the severity of these asthma features. RNA sequencing analysis of lungs from prenatally stressed, non-BMC, ovalbumin-sensitized females unveiled a deregulated expression of genes involved in asthma pathogenesis, tissue remodeling, and tight junction formation. It was also possible to independently confirm a tight junction disruption. In line with this, we identified an altered perinatal and/or postnatal expression of genes involved in lung development along with an impaired alveolarization in female prenatally stressed mice. CONCLUSION: Here we have shown that the fetal origin of asthma is orchestrated by a disrupted airway epithelium and further perpetuated by a predisposed immune system.


Subject(s)
Asthma/immunology , Lung/immunology , Prenatal Exposure Delayed Effects/immunology , Respiratory Mucosa/immunology , Animals , Bone Marrow/immunology , Cells, Cultured , Disease Models, Animal , Female , Immunity/immunology , Inflammation/immunology , Male , Mice , Mice, Inbred C57BL , Ovalbumin/immunology , Pregnancy , Respiratory Hypersensitivity/immunology , Tight Junctions/immunology
19.
Carcinogenesis ; 41(8): 1134-1144, 2020 08 12.
Article in English | MEDLINE | ID: mdl-31740923

ABSTRACT

Increased expression of osteopontin (secreted phosphoprotein 1, SPP1) is associated with aggressive human lung adenocarcinoma (LADC), but its function remains unknown. Our aim was to determine the role of SPP1 in smoking-induced LADC. We combined mouse models of tobacco carcinogen-induced LADC, of deficiency of endogenous Spp1 alleles, and of adoptive pulmonary macrophage reconstitution to map the expression of SPP1 and its receptors and determine its impact during carcinogenesis. Co-expression of Spp1 and mutant KrasG12C in benign cells was employed to investigate SPP1/KRAS interactions in oncogenesis. Finally, intratracheal adenovirus encoding Cre recombinase was delivered to LSL.KRASG12D mice lacking endogenous or overexpressing transgenic Spp1 alleles. SPP1 was overexpressed in experimental and human LADC and portended poor survival. In response to two different smoke carcinogens, Spp1-deficient mice developed fewer and smaller LADC with decreased cellular survival and angiogenesis. Both lung epithelial- and macrophage-secreted SPP1 drove tumor-associated inflammation, while epithelial SPP1 promoted early tumorigenesis by fostering the survival of KRAS-mutated cells. Finally, loss and overexpression of Spp1 was, respectively, protective and deleterious for mice harboring KRASG12D-driven LADC. Our data support that SPP1 is functionally involved in early stages of airway epithelial carcinogenesis driven by smoking and mutant KRAS and may present an important therapeutic target.


Subject(s)
Adenocarcinoma of Lung/pathology , Carcinogenesis/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Osteopontin/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Smoking/adverse effects , Adenocarcinoma of Lung/chemically induced , Adenocarcinoma of Lung/genetics , Animals , HEK293 Cells , Humans , Lung Neoplasms/chemically induced , Mice , Mice, Inbred C57BL , Mutation , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Osteopontin/genetics
20.
Elife ; 82019 05 29.
Article in English | MEDLINE | ID: mdl-31140976

ABSTRACT

Lung cancer and chronic lung diseases impose major disease burdens worldwide and are caused by inhaled noxious agents including tobacco smoke. The cellular origins of environmental-induced lung tumors and of the dysfunctional airway and alveolar epithelial turnover observed with chronic lung diseases are unknown. To address this, we combined mouse models of genetic labeling and ablation of airway (club) and alveolar cells with exposure to environmental noxious and carcinogenic agents. Club cells are shown to survive KRAS mutations and to form lung tumors after tobacco carcinogen exposure. Increasing numbers of club cells are found in the alveoli with aging and after lung injury, but go undetected since they express alveolar proteins. Ablation of club cells prevents chemical lung tumors and causes alveolar destruction in adult mice. Hence club cells are important in alveolar maintenance and carcinogenesis and may be a therapeutic target against premalignancy and chronic lung disease.


Subject(s)
Adenocarcinoma of Lung/pathology , Carcinogens/metabolism , Environmental Exposure , Epithelial Cells/pathology , Epithelial Cells/physiology , Animals , Cell Proliferation , Cell Survival , Disease Models, Animal , Epithelial Cells/drug effects , Mice , Pulmonary Alveoli/cytology , Respiratory Mucosa/cytology , Tobacco Smoking/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...